The cellular nutrient glutamine launches a metabolic signaling pathway that promotes the function of some immune system T cells and suppresses others, researchers have discovered.
They show that a drug that inhibits glutamine metabolism -- currently in clinical trials as an anticancer agent -- might also be useful as a treatment for inflammatory and autoimmune diseases. The study, published in the journal Cell, also suggests strategies for using the drug to enhance cancer immunotherapies.
The researchers have focused on trying to understand how a cell integrates its nutrients and metabolism with its function. They previously demonstrated the importance of the cellular fuel glucose for the activation and function of T cells that drive inflammation and eliminate pathogens.
In the current work, they turned their attention to another major fuel: glutamine, which has primarily been studied in the context of cancer cell metabolism. Several companies are developing drugs that inhibit glutamine metabolism to reduce cancer cell growth and proliferation.
The investigators expected that inhibiting glutamine metabolism -- like blocking glucose metabolism -- would prevent T cell activation and function. They used a drug that inhibits the first step in glutamine metabolism, an enzyme called glutaminase. They also studied mice with targeted genetic deletion of the glutaminase gene.
The researchers were surprised to find that certain T cells -- those that mediate antiviral and anticancer responses -- performed better in the absence of glutaminase activity. Other T cells involved in inflammatory and autoimmune diseases performed worse.
"We were intrigued that one metabolic perturbation could have a very different impact on the function of subsets of T cells," said a graduate student who led the studies.
The findings fit with studies of glutamine metabolism in cancer cells, said the senior author.
"This compound (that inhibits glutaminase) works in some tumors and doesn't work in others. What authors found is that it's the same for T cells: some T cells need this pathway, and some don't," the senior author said. "If we block the pathway, the autoimmune T cells don't do so well, but the anticancer T cells do better."
The researchers demonstrated in mouse models of allergic asthma, inflammatory bowel disease, and chronic graft-versus-host disease that eliminating glutaminase activity protected against inflammation and disease.
"The glutaminase inhibitor has a remarkable safety profile, and we think it could be repurposed in potentially quite a variety of inflammatory and autoimmune diseases," the senior author said.
To examine the impact of inhibiting glutaminase on T cells that mediate anticancer responses, the investigators used the drug in a mouse model of CAR (chimeric antigen receptor) T-cell therapy. CAR T cells are cancer-killing T cells that have been genetically engineered to recognize specific cancer cells.
In the mouse model, the researchers found that treatment with the glutaminase inhibitor improved CAR T-cell function, but the enhanced function was lost over time. A shorter exposure to the inhibitor improved CAR T-cell function, and the T cells persisted for a longer period of time.
"One of the problems with CAR T-cell therapy is survival of the engineered cells," the lead said. "We think that a short treatment with a glutaminase inhibitor might improve the persistence of CAR T cells."
The findings have implications for current clinical trials of a glutaminase inhibitor in combination with immunotherapies called checkpoint inhibitors, senior author said.
"Our data suggest that the combination of drugs might work best if you give the glutaminase inhibitor for a short period of time and then remove it."
The investigators are testing varied dosing schedules in mouse models of cancer.
The researchers also probed the mechanistic changes resulting from glutaminase inhibition and demonstrated that the glutamine metabolic pathway -- usually thought of as only generating energy -- is tightly integrated with cell signaling and gene expression.
"By changing this metabolic enzyme, we're affecting a downstream metabolite that directly changes chromatin and gene accessibility and gene expression," the senior author said. "As a concept, this idea that metabolic pathways are signaling pathways is relatively new."
http://news.vumc.org/2018/11/01/glutamine-metabolism-affects-t-cell-signaling/
https://www.cell.com/cell/fulltext/S0092-8674(18)31309-6
Latest News
How DMT psychedelic alters…
By newseditor
Posted 22 Mar
Molecular mechanisms of spe…
By newseditor
Posted 21 Mar
Mechano- and ligand-depende…
By newseditor
Posted 21 Mar
Anaphylaxis linked to the b…
By newseditor
Posted 20 Mar
Role for retinoids in aspar…
By newseditor
Posted 20 Mar
Other Top Stories
Link between obesity and a common liver disease identified
Read more
Obesity and heart disease proof mouse model!
Read more
Epigenetic switch for obesity
Read more
Novel loci influencing circulating leptin levels identified
Read more
A new target for the treatment of fatty liver disease
Read more
Protocols
High-efficiency pharmacogen…
By newseditor
Posted 11 Mar
A combinatorial panel for f…
By newseditor
Posted 03 Mar
Deconstructing body axis mo…
By newseditor
Posted 22 Feb
Transcription factor bindin…
By newseditor
Posted 21 Feb
BOMA, a machine-learning fr…
By newseditor
Posted 16 Feb
Publications
Human brain effects of DMT…
By newseditor
Posted 22 Mar
Determinants and outcomes o…
By newseditor
Posted 21 Mar
TSKS localizes to nuage in…
By newseditor
Posted 21 Mar
Transcriptomic and connecto…
By newseditor
Posted 21 Mar
RNA levers and switches con…
By newseditor
Posted 21 Mar
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar