Damages to the central nervous system (CNS), for example in the case of spinal cord injury, can result in permanent loss of sensory and motor function. It is because the severed axons are unable to regenerate. As of today, there are very limited options to help these patients regain their motor abilities. Scientists have been exploring ways to enable the regeneration of severed axons, with a view to developing viable treatments in the long term.
In a study using mice, a research team untangled some of the complexities in the regeneration of severed axons. They found that the deletion of PTPN2, a phosphatase-coding gene, in neurons can prompt axons to regrow. When combined with the type II interferon IFNγ, it can further accelerate the process and boost the number of axons regenerated. The results have recently been published in the scientific journal Neuron.
The human nervous system is composed of two parts, namely the central and peripheral nervous systems. Unlike the central nervous system, peripheral nerves have stronger ability to regrow and repair by themselves after injury. Scientists have yet to fully understand the relationship between this self-repair and the intrinsic immune mechanism of the nervous system. Two mysteries the team wanted to resolve were how immune-related signaling pathways affected neurons after injury, and whether they could enhance axonal regeneration directly.
This study investigated whether the signaling pathway IFNγ-cGAS-STING had any role in the regeneration process of peripheral nerves. Researchers found that peripheral axons could directly modulate the immune response in their injured environment to promote self-repair after injury.
In previous research, the team had already demonstrated that elevating the neuronal activity and regulating the neuronal glycerolipid metabolism pathway could boost axon regenerative capacity. The current study is providing further insights into the search of treatment solutions for challenging conditions such as spinal cord injuries, with one possible option being the joining of several types of different signaling pathways.
https://www.cell.com/neuron/fulltext/S0896-6273(22)00961-8
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fdriving-axon&filter=22
Intrinsic immune mechanism in axon regeneration
- 496 views
- Added
Latest News
Propionic acid protects ner…
By newseditor
Posted 28 Jan
How cells prevent harmful e…
By newseditor
Posted 28 Jan
Structured cerebellar conne…
By newseditor
Posted 28 Jan
Origins of pleasurable touc…
By newseditor
Posted 25 Jan
Unknown way cells protect t…
By newseditor
Posted 25 Jan
Other Top Stories
Gene mutations linking intracranial aneurysms identified!
Read more
A missing genetic switch at the origin of malformations
Read more
A genetic mutation confirmed as predisposing factor in chronic obst…
Read more
Rare gene variants of eczema identified!
Read more
How bone-bordering cells may help shape a skull
Read more
Protocols
Machine learning prediction…
By newseditor
Posted 09 Jan
Differentiating PC12 cells…
By newseditor
Posted 09 Jan
Ultrasensitive sensors reve…
By newseditor
Posted 05 Jan
In vitro-derived medium spi…
By newseditor
Posted 04 Jan
Molecular and spatial signa…
By newseditor
Posted 30 Dec
Publications
Brainstem networks construc…
By newseditor
Posted 28 Jan
The role of platelets in im…
By newseditor
Posted 28 Jan
Invariant inhibition to cal…
By newseditor
Posted 27 Jan
Birdsong neuroscience and t…
By newseditor
Posted 27 Jan
Touch neurons underlying do…
By newseditor
Posted 25 Jan
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar