Neutrophils are the superheroes of the body's immune system. Normally mild-mannered, they travel through the bloodstream until they reach an emergency situation, such as a cut or infection, where they switch into battle-mode to engulf and destroy foreign invaders.
How do these microscopic avengers transition from silent, patrolling responders to merciless killing machines?
Researchers from the have found that the key is a receptor molecule in the cell that senses reactive oxygen species. The finding is published in the journal Developmental Cell.
Reactive oxygen species, or ROS, are produced by the body as a byproduct of metabolism. They are harmful to cells at high levels, because they can bond to and damage molecules that the cell relies on, like DNA.
A receptor called TRPM2 acts as an ROS sensor or gauge inside the neutrophil. When ROS levels are low, the neutrophil is on the move, looking for infections to fight. As the neutrophil nears a wound site and begins to encounter foreign particles or bacteria, it engulfs them and generates a killing burst of ROS to destroy the captured enemy. TRPM2 senses these consistent, high levels of ROS inside the cell and puts the neutrophil in park, so the cell stays in place to continue killing invading microbes.
"The neutrophil senses a dramatic increase in reactive oxygen species as it gets closer to the wound site, and this triggers the shutdown of the migration of the cell," said corresponding author on the paper.
"Once the neutrophil ceases moving, it just kills one bacteria or pathogen after another -- and can concentrate on doing its job of cleaning up the site," author said.
To shut down migration, TRPM2 must be chemically oxidized, which is what happens when it is exposed to reactive oxygen species. In its oxidized state, TRPM2 binds to another receptor called FPR1, which inactivates the signaling process that causes neutrophils to wander.
Drugs that target the TRMP2 receptor could be useful in preventing the migration of too many neutrophils to a wound site, author said.
"Too many neutrophils in a small area can actually damage tissue," author said.
https://news.uic.edu/reactive-oxygen-species-switch-immune-cells-from-migratory-to-murderous
Reactive oxygen species switch immune cells from migratory to murderous
- 2,925 views
- Added
Edited
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Burst of morning gene activity tells plants when to flower
Read more
How plants bind their green pigment chlorophyll
Read more
A topical gel to protect farmers against pesticide-induced neuronal…
Read more
Exploiting epigenetic variation for plant breeding
Read more
Plant-based toxin modified to target tumors
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar