An analysis of nearly 300 recently identified human SARS-CoV-2 antibodies uncovered a gene frequently used in antibodies that most effectively target the virus. The results contribute to growing structural insight that will be needed for successful vaccine development against SARS-CoV-2.
As the global COVID-19 pandemic continues, multiple vaccine candidates have entered clinical trials. Yet, the molecular features that contribute to the most effective antibody response remain unclear.
The spike protein of SARS-CoV-2 uses its receptor binding domain (RBD) to infect the host receptor, ACE2, on human cells. Antibodies that could target RBD and block binding to ACE2 are highly sought, and a number have been discovered.
The researchers compiled a list of 294 such RBD-targeting antibodies. By analyzing them, they found that a gene in the IGHV gene family, known as IGHV3-53, is the most frequently used IGHV gene for targeting the RBD of the virus spike protein. IGHV3-53 antibodies, the authors say, not only have lower mutation rates but are also more potent.
By studying the crystal structures of two IGHV3-53 antibodies bound to the RBD with or without Fab CR3022, at 2.33 to 3.20 Å resolution revealed that the germline-encoded residues dominate recognition of the ACE2 binding site.. This binding mode limits the IGHV3-53 antibodies to short CDR H3 loops, but accommodates light-chain diversity. These IGHV3-53 antibodies show minimal affinity maturation and high potency, which is promising for vaccine design.
This detailed insight into IGHV-53 neutralizing antibodies should facilitate design of vaccine antigens that elicit this type of neutralizing antibody response, the authors say. "As IGHV3-53 is found at a reasonable frequency in healthy individuals, this particular antibody response could be commonly elicited during vaccination," they write.
https://science.sciencemag.org/content/early/2020/07/10/science.abd2321
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fstructural-basis-of-a&filter=22
A Gene in SARS-CoV-2 Antibody to Target the Virus Protein Identified!
- 1,048 views
- Added
Edited
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Why Men Find Switching Tasks More Difficult
Read more
Medicine-making microbes in New York City soil!
Read more
A new app to help smokers quit
Read more
How stress may lead to cardiovascular disease & stroke
Read more
Excess tau protein damages brain's GPS in Alzheimer's
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar