Viral DNA in human genomes, embedded there from ancient infections, serve as antivirals that protect human cells against certain present-day viruses, according to new research.
The paper published in Science, provides proof of principle of this effect.
Previous studies have shown that fragments of ancient viral DNA – called endogenous retroviruses – in the genomes of mice, chickens, cats and sheep provide immunity against modern viruses that originate outside the body by blocking them from entering host cells. Though this study was conducted with human cells in culture in the lab, it shows that the antiviral effect of endogenous retroviruses likely also exists for humans.
The research is important because further inquiry could uncover a pool of natural antiviral proteins that lead to treatments without autoimmune side effects. The work reveals the possibility of a genome defense system that has not been characterized, but could be quite extensive.
“The results show that in the human genome, we have a reservoir of proteins that have the potential to block a broad range of viruses,” said the study’s first author.
Endogenous retroviruses account for about 8% of the human genome – at least four times the amount of DNA that make up the genes that code for proteins. Retroviruses introduce their RNA into a host cell, which is converted to DNA and integrated into the host’s genome. The cell then follows the genetic instructions and makes more virus.
In this way, the virus hijacks the cell’s transcriptional machinery to replicate itself. Typically, retroviruses infect cells that don’t pass from one generation to the next, but some infect germ cells, such as an egg or sperm, which opens the door for retroviral DNA to pass from parent to offspring and eventually become permanent fixtures in the host genome.
In order for retroviruses to enter a cell, a viral envelope protein binds to a receptor on the cell’s surface, much like a key into a lock. The envelope is also known as a spike protein for certain viruses, such as SARS-CoV-2.
In the study, the researchers used computational genomics to scan the human genome and catalog all the potential retroviral envelope protein-coding sequences that may have retained receptor binding activity. Then they ran more tests to detect which of these genes were active – that is, expressing retroviral envelope gene products in specific human cell types.
“We found clear evidence of expression,” the author said, “and many of them are expressed in the early embryo and in germ cells, and a subset are expressed in immune cells upon infection.”
Once the researchers had identified antiviral envelope proteins expressed in different contexts, they focused on one, Suppressyn, because it was known to bind a receptor called ASCT2, the cellular entry point for a diverse group of viruses called Type D retroviruses. Suppressyn showed a high level of expression in the placenta and in very early human embryonic development.
They then ran experiments in human placental-like cells, as the placenta is a common target for viruses.
The cells were exposed to a type D retrovirus called RD114, which is known to naturally infect feline species, such as the domestic cat. While other human cell types not expressing Suppressyn could be readily infected, the placental and embryonic stem cells did not get infected. When the researchers experimentally depleted placental cells of Suppressyn, they became susceptible to RD114 infection; when Suppressyn was returned to the cells, they regained resistance.
In addition, the researchers did reverse experiments, using an embryonic kidney cell line normally susceptible to RD114. The cells became resistant when the researchers experimentally introduced Suppressyn into these cells.
The study shows how one human protein of retroviral origin blocks a cell receptor that allows viral entry and infection by a broad range of retroviruses circulating in many non-human species. In this way, the author said, ancient retroviruses integrated into the human genome provide a mechanism for protecting the developing embryo against infection by related viruses.
Future work will explore the antiviral activity of other envelope-derived proteins encoded in the human genome, the author said.
https://www.science.org/doi/10.1126/science.abq7871
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fantiviral-activity-of-a&filter=22
A human placental protein of retroviral origin shows antiviral activity
- 862 views
- Added
Edited
Latest News
Noncanonical cleavage mecha…
By newseditor
Posted 07 Jun
Reversing autoreactivity in…
By newseditor
Posted 07 Jun
Mapping metabolic fluxes in…
By newseditor
Posted 07 Jun
Regulation of fast twitch m…
By newseditor
Posted 07 Jun
Micro RNA mediated hair reg…
By newseditor
Posted 06 Jun
Other Top Stories
New signaling pathway in neurons
Read more
Re-engineering Botox for Multiple Functions
Read more
Nanobody-mediated control of gene expression and epigenetic memory
Read more
Crystal structure of amyloid fibrils formed by neurodegenerative pr…
Read more
Renal fibrosis with telomere shortening!
Read more
Protocols
Using mass spectrometry ima…
By newseditor
Posted 07 Jun
Low-threshold, high-resolut…
By newseditor
Posted 05 Jun
Optical opening of the bloo…
By newseditor
Posted 04 Jun
Protocol to establish a gen…
By newseditor
Posted 03 Jun
Metaboverse enables automat…
By newseditor
Posted 02 Jun
Publications
The stress granule protein…
By newseditor
Posted 07 Jun
Revitalizing myocarditis tr…
By newseditor
Posted 07 Jun
Bioengineered particles exp…
By newseditor
Posted 07 Jun
Ketone bodies promote strok…
By newseditor
Posted 07 Jun
Sustained alternate-day fas…
By newseditor
Posted 07 Jun
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar