The common commensal gut bacterium Bacteroides thetaiotaomicron uses phase separation of the transcription termination factor Rho to colonize and thrive in the mammalian gut, according to a new study in mice. The findings suggest that phase separation may also be vital for other important gut microbes and relevant for novel microbiome-based clinical applications.
The gut microbiota plays a critical role in human health. Manipulating gut commensal communities could provide promising therapeutic pathways for treating a host of diseases. However, this goal requires understanding mechanisms that enable beneficial bacteria to colonize the gut – a complex process that includes successful competition for scarce nutrients and resistance to the host’s immune system.
Here, the researchers evaluated these mechanisms in B. thetaiotaomicron, one of the most abundant bacterial species in the human gut of healthy individuals and a species currently being tested in clinical trials as a potential therapeutic for gastrointestinal disorders.
The authors focused on the highly conserved transcription termination factor Rho, which is essential in regulating gene transcription in bacteria. However, unlike other bacteria, B. thetaiotaomicron’s Rho protein harbors a large intrinsically disordered domain (IDR).
The authors now show that the unique IDR of this Rho protein enables liquid-liquid phase separation of the transcription termination factor and is critical for B. thetaiotaomicron gene regulation in the gut.
Through in vitro and in vivo experiments in a mouse model, the authors found that B. thetaiotaomicron responded to the mammalian gut environment by sequestering Rho molecules within a membraneless compartment via phase separation. This IDR-dependent molecular condensation increased Rho termination activity, resulting in the modified transcription of hundreds of genes, including several required for gut fitness and colonization.
https://www.science.org/doi/10.1126/science.abn7229
Common gut bacterium exploits Rho factor phase separation to colonize the mammalian gut
- 1,375 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Immaturity of microbiota and epithelial barriers implicated in neon…
Read more
Mechanisms controlling executive functions of the primate brain
Read more
How environmental factors could provide for a young brain
Read more
Fecal transplant plus fibre improves insulin sensitivity in severel…
Read more
Structural organization of cerebral neocortex
Read more
Protocols
D-LMBmap: a fully automated…
By newseditor
Posted 30 Sep
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Publications
Monoamines' role in islet c…
By newseditor
Posted 03 Oct
A cholinergic circuit that…
By newseditor
Posted 03 Oct
The emerging role of recept…
By newseditor
Posted 02 Oct
Total recall: the role of P…
By newseditor
Posted 02 Oct
The 2023 Nobel Prize in Phy…
By newseditor
Posted 02 Oct
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar