Some mutations that enable drug resistance in the malaria-causing parasite Plasmodium falciparum may also help it grow, according to a new study published in PLOS Pathogens.
P. falciparum is a single-celled parasite that infects the human bloodstream and causes the most severe form of malaria. Some strains of P. falciparum have evolved resistance to antimalarial drugs, including the commonly used drug chloroquine. Often, chloroquine resistance mutations hinder P. falciparum's ability to infect the bloodstream and grow.
However, in a previous study, researchers discovered that a uniquely mutated version of the P. falciparum gene known as pfcrt provides drug resistance while avoiding the detrimental impact of growth seen with more widely distributed mutated pfcrt variants.
In the new study, the team investigated this version, or allele, of the pfcrt gene, which is called Cam734 and has been found in certain regions in Southeast Asia. Using DNA-modifying proteins called zinc-finger nucleases, they characterized the individual mutations unique to Cam734 in terms of their effects on drug resistance, metabolism, and growth rates in living parasites.
The researchers found that a mutation called A144F is required for the chloroquine resistance enabled by Cam734 and that this mutation also contributes to resistance to first-line drugs amodiaquine and quinine. Additional mutations were identified that contributed to resistance to chloroquine and impacted the potency of other antimalarials. When the scientists reversed these mutations in living parasites that had the Cam734 allele, growth slowed, indicating that these mutations also enhance infection.
Additional experiments identified specific effects of Cam734 mutations on several metabolic pathways in P. falciparum, including the digestion of human hemoglobin that parasites use to obtain amino acids for protein synthesis.
They also found evidence that Cam734 helps to maintain an electrochemical gradient that allows the protein encoded by the pfcrt gene to thwart the cellular effects of chloroquine.
These new findings significantly broaden scientists' understanding of Cam734, the second most common variant of the pfcrt gene in Southeast Asia. The findings identify multiple intracellular processes and multidrug resistance phenotypes impacted by changes in PfCRT and can help inform future malaria treatment efforts.
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005976
Drug resistance mutations also enhance growth in malaria parasite
- 1,191 views
- Added
Edited
Latest News
Linking endosomal trafficking to aggressive brain cancer
Overactive food quality control system triggers food allergies
How plants produce defensive toxins without harming themselves
Artificially infect mosquitoes with human malaria to identify new chemicals
Basophil-neuronal axis in acute itch in eczema
Other Top Stories
3D imaging method to identify sperm cells moving at a high speed
How does the brain link events to form a memory?
Circadian network neurons integrate sensory input
ACE2 is higher in mens blood and may help COVID-19 infect cells
Inhibition of sphingolipid metabolism and neurodegenerative diseases
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
An Arf/Rab cascade controls the growth and invasiveness of glioblastoma
Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV P…
MCT1 Deletion in Oligodendrocyte Lineage Cells Causes Late-Onset Hypomyelination and Axonal Degen…
Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis
MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells
Presentations
Homeostasis
PLANT MITOCHONDRIAL BIOLOGY
Photosynthesis
Endocrine Disorders
THE PITUITARY GLAND
Posters
ACMT 2020 Annual Scientific Meeting Abstracts - New York, NY
Abstracts from the 2020 Annual Scientific Meeting of the British and Irish Hypertension Society (…
ACNP 58th Annual Meeting: Poster Session III
ACNP 58th Annual Meeting: Poster Session II
ACNP 58th Annual Meeting: Poster Session I