Major infections such as influenza and bacterial sepsis kill millions of people each year, often resulting from dangerous complications that impair the body's blood vessels. But the reasons why some patients experience these dramatic responses to infections -- and others don't -- have been unclear.
"Improperly functioning blood vessels can have lethal consequences," explained the author. "For example, when the lungs' small blood vessels become leaky, the lungs fill with water and stop working properly, resulting in an often fatal condition called acute respiratory distress syndrome [ARDS]. No matter what type of infection a patient has initially, if he or she goes on to develop vascular leakage, that patient is in trouble. We wanted to find out if the Tie2 protein played a role in determining whether or not patients experience these devastating vascular complications," said the author.
The authors first determined in mouse models of several infections -- including the parasitic infection malaria, the viral infection influenza and the bacterial infection sepsis - that all animals had decreased levels of Tie2 compared to baseline levels. Subsequent experiments revealed that reduced Tie2 was indeed setting the stage for vascular leakage and ensuing clinical complications in the animal models.
"The Tie2 gene is essential for embryonic development and knockout mice without the Tie2 gene die in utero," said corresponding author. "Interestingly, mice with a single copy of the gene behave normally until they are challenged with infections."
After genomic analysis identified common variants that influence Tie2 expression, the authors examined a cohort of more than 1,600 intensive care unit (ICU) patients, to determine if variation in Tie2 expression was associated with the development of ARDS. Indeed, the members of the cohort who had genetic variants linked to low Tie2 levels were at higher risk for developing ARDS, while those with genetic variants linked to higher Tie2 levels were protected from this devastating complication.
The new findings, which appear in the Proceedings of the National Academy of Sciences (PNAS), thus demonstrate that diminished Tie2 levels are associated with potentially devastating responses to infections, while higher Tie2 levels provide protection.
http://www.bidmc.org/News/In-Research/2016/February/parikh.aspx
Latest News
Linking endosomal trafficking to aggressive brain cancer
Overactive food quality control system triggers food allergies
How plants produce defensive toxins without harming themselves
Artificially infect mosquitoes with human malaria to identify new chemicals
Basophil-neuronal axis in acute itch in eczema
Other Top Stories
3D imaging method to identify sperm cells moving at a high speed
How does the brain link events to form a memory?
Circadian network neurons integrate sensory input
ACE2 is higher in mens blood and may help COVID-19 infect cells
Inhibition of sphingolipid metabolism and neurodegenerative diseases
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
An Arf/Rab cascade controls the growth and invasiveness of glioblastoma
Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV P…
MCT1 Deletion in Oligodendrocyte Lineage Cells Causes Late-Onset Hypomyelination and Axonal Degen…
Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis
MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells
Presentations
Homeostasis
PLANT MITOCHONDRIAL BIOLOGY
Photosynthesis
Endocrine Disorders
THE PITUITARY GLAND
Posters
ACMT 2020 Annual Scientific Meeting Abstracts - New York, NY
Abstracts from the 2020 Annual Scientific Meeting of the British and Irish Hypertension Society (…
ACNP 58th Annual Meeting: Poster Session III
ACNP 58th Annual Meeting: Poster Session II
ACNP 58th Annual Meeting: Poster Session I