Herpes simplex virus (HSV) is found in about 90 percent of the United States population and leads to cold sores, recurrent eye infections, genital lesions, and in rare cases encephalitis - inflammation of the brain which has a 30 percent mortality rate (70 to 80 percent if left untreated). Its closely related virus, VZV, also causes chicken pox and shingles.
HSV was previously found to lay dormant in neurons. Researchers an experimental assay to force the virus to go latent in mouse primary neurons in a dish and then to become reactivated. This allowed them to study specific cellular protein pathways that could be involved in viral reactivation.
They wondered whether the virus is able to sense when the neurons are under stress and activate an escape pathway. They focused on a protein called JNK, which had been linked to stress. In a dish of mouse neurons, scientists added chemicals to mimic the loss of nerve growth factor, which neurons need to remain healthy. They also used a corticosteroid - a natural stress hormone - that previously had been shown to activate the JNK pathway and trigger neuron death.
As they studied the cells, they found that the JNK protein pathway - which includes proteins called DLK and JIP3 - was activated just before the virus began to leave neurons.
When the researchers took a closer look, they found that the herpes virus can be reactivated even though the viral DNA in neurons was still in a repressed state. That is, the histones associated with viral DNA did not undergo demethylation - a process that allows tightly packaged DNA to become more open so that gene expression can occur, including HSV gene expression, which was precisely what the virus needed in order to be reactivated.
Experiments show that the virus has figured out a way to modify its chromatin - the tightly packaged DNA - right next to the methyl marks. This happens by phosphorylation of the histone adjacent to the methyl mark.
The phosphorylation was also dependent on activation of the JNK pathway. Therefore, the experiments link the stress-activated pathway to the very earliest changes to the viral DNA.
The team found that once the initial brakes are eased, full viral gene expression did require removal of the repressive histone methylation, which allows the virus to complete the reactivation process. This, in turn, leads to full virus formation outside the neuron. From there, disease states such as cold sores and encephalitis are born.
The next step is to establish this model of HSV infection and reactivation in human neurons, which has not yet been accomplished. If it can be, and if the JNK pathway is crucial for viral reactivation in humans, then it could be possible to develop treatments for the diseases that are linked to HSV, as well as its closely-related viruses.
http://news.unchealthcare.org/news/2015/december/discovery-shows-how-herpes-simplex-virus-reactivates-in-neurons-to-trigger-disease
Edited
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Pangenomics removes bias from human genotyping
Read more
Face detection in untrained deep neural networks
Read more
The origin of neuronal diversity!
Read more
Simultaneous identification of diverse pathogens
Read more
Cancer-spotting AI and human experts can be fooled by image-tamperi…
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar