Scientists have made a major breakthrough in understanding how the parasite that causes malaria is able to multiply at such an alarming rate, which could be a vital clue in discovering how it has evolved, and how it can be stopped.
For the first time, scientists have shown how certain molecules play an essential role in the rapid reproduction of parasite cells, which cause this deadly disease.
This could be the next step towards being able to prevent the malaria parasite from reproducing.
In the study, which is published in Cell Reports, the team wanted to better understand how the parasite's cell divides and multiplies especially within a mosquito.
Proteins are large, complex molecules that play many critical roles in the body. They do most of the work in cells and are required for the structure, function, and regulation of the body's tissues and organs. Each organism has DNA organised into a certain number of chromosomes and needs condensins in order to 'split' this DNA when they multiply. Condensins are large protein complexes that play a central role in chromosome assembly and segregation during mitosis and meiosis.
In the malaria parasite (Plasmodium), the role of condensins in multiplication and proliferation was unclear. The team looked at two of the crucial condensin subunits, called SMC2 and SMC4, which are required to maintain the structure of chromosomes in a cell of other organisms.
During early schizogony, SMC2/SMC4 localize to a distinct focus, identified as the centromeres, but do not form condensin I or II complexes. In mature schizonts and during male gametogenesis, there is a diffuse SMC2/SMC4 distribution on chromosomes and in the nucleus, and both condensin I and condensin II complexes form at these stages.
Knockdown of smc2 and smc4 gene expression reveals essential roles in parasite proliferation and transmission. The condensin core subunits (SMC2/SMC4) form different complexes and may have distinct functions at various stages of the parasite life cycle.
The senior author said: "We have tried to understand how these molecules work in the unusual pattern of multiplication by the parasite. We found that these molecules are there at all the stages of multiplication and they are present only at a certain part of the chromosome, which is called the centromere. We wanted to understand how does the parasite multiply? How do these molecules organise themselves and the DNA in those cells? It is fascinating how a single cell can carry out so many different modes of multiplication, and we need to understand how it does this."
After analysing the parasite, the team found a very unusual type of cell division, showing that the malaria parasite has evolved ways to ensure its survival by way of its cell division.
The senior author says: "This particular parasite is very adaptable. Even if you kill it in the human blood stream, it can move into the mosquito stage. Over time, it has adapted to survive and has a lot of genetic plasticity, which is why it is difficult to control the disease
ttps://www.cell.com/cell-reports/fulltext/S2211-1247(20)30048-6
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fplasmodium-condensin&filter=22
How the malaria parasite grows and multiplies
- 1,458 views
- Added
Edited
Latest News
Cells mechanical forces linked to immune system
Characterization of a new Leishmania major strain for use in a controlled human infection model
Stress granules do not suppress mRNA translation!
How the brain paralyzes you while you sleep
Strong link between gut microbes, diet and health in humans
Other Top Stories
Exocytosis mechanism unraveled!
DNA-based calculator
Radiation induced cross talk between nucleus and mitochondria for cell survival
Distinct peroxisomal pores import proteins
Regulation of cell size!
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
Mechanical Stiffness Controls Dendritic Cell Metabolism and Function
Characterization of a new Leishmania major strain for use in a controlled human infection model
Serum biomarkers in primary mitochondrial disorders
Stearoyl-CoA Desaturase-Mediated Monounsaturated Fatty Acid Availability Supports Humoral Immunity
Monocytes carrying GFAP detect glioma, brain metastasis and ischaemic stroke, and predict gliobla…
Presentations
Homeostasis
PLANT MITOCHONDRIAL BIOLOGY
Photosynthesis
Endocrine Disorders
THE PITUITARY GLAND
Posters
ACMT 2020 Annual Scientific Meeting Abstracts - New York, NY
Abstracts from the 2020 Annual Scientific Meeting of the British and Irish Hypertension Society (…
ACNP 58th Annual Meeting: Poster Session III
ACNP 58th Annual Meeting: Poster Session II
ACNP 58th Annual Meeting: Poster Session I