Human noroviruses are the leading cause of acute gastroenteritis worldwide, a major global health problem for which there are no specific treatments or vaccines. Understanding the first phase of infection – the process the virus follows to invade cells – is a decisive step in the development of effective preventive and therapeutic strategies. A team of researchers making strides in that direction.
The researchers report in the journal Nature Communications that the globally dominant human norovirus GII.4 strain invades gastrointestinal cells via an unexpected mechanism. The viral strategy involves interactions between specific components on both viral and human cell surface proteins and activates mechanisms that destabilize the cell membrane. The findings provide insight into the viral infection process, highlighting unique pathways and targets for developing effective therapeutics.
“We focused our study in the human norovirus pandemic strain GII.4, the one responsible for causing most cases of gastroenteritis around the world,” said the first author.
The authors worked with human intestinal enteroids, a laboratory model of the human gastrointestinal tract that recapitulates its cellular complexity, diversity and physiology. Human enteroids mimic strain-specific host-virus infection patterns, making them an ideal system to dissect human norovirus infection, identify strain-specific growth requirements and develop and test treatments and vaccines.
“We discovered that the binding of human norovirus GII.4 to enteroid cells wounds the cells’ membranes, which in turn triggers a membrane repair mechanism to the injury site, activating another cellular pathway known as the CLIC pathway,” the author said. “We observed crosstalk between CLIC-mediated internalization of viral particles and host repair mechanisms. We propose that these pathways could be manipulated to interfere with viral entry in human intestinal cells.”
“To our knowledge, this is a previously uncharacterized complex entry process into human enteroids that combines several independent pathways. There may be more molecules involved in this entry pathway than what have been reported for other viruses,” said the corresponding author of the work. “Other viruses use some components of the pathways mentioned in our paper, but this is the first time a virus has been shown to use all of them together. We now are interested in figuring out the role each of these molecules plays in this novel, interesting process, and whether it relates to the pandemic nature of GII.4.”
The team also discovered novel aspects of how the virus itself participates in the entry process.
"We know the virus structure is organized into two domains or parts, a shell domain and a protruding domain,” the first author said. “Previously, we thought that all the interactions between the virus and cells involved only the protruding domain. In this work, we found that both the protruding and the shell domains are involved in the entry process. This suggests that virus interactions with cells cause changes in the viral structure that facilitate the cell entry. We also are interested in further exploring how these structural changes are induced and their precise role in the viral entry process.”
https://www.nature.com/articles/s41467-023-36398-z
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fclic-and-membrane-wound&filter=22
Human norovirus exploits unexpected entry mechanism to cause gastroenteritis
- 859 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Burst of morning gene activity tells plants when to flower
Read more
How plants bind their green pigment chlorophyll
Read more
A topical gel to protect farmers against pesticide-induced neuronal…
Read more
Exploiting epigenetic variation for plant breeding
Read more
Plant-based toxin modified to target tumors
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar