The presence of probiotics such as lactic acid bacteria changes the environment in the intestine and forces the yeast fungus Candida albicans to change its metabolism, making it less infectious. This way, probiotics can contain or prevent the spread of fungal infections in the gut. Researchers have also found that intestinal cells actively promote bacterial growth to protect themselves from the fungus. The findings were published in Nature Communications.
The yeast Candida albicans naturally colonizes the human body, especially common in the intestine. Usually this is a benign colonization, as the immune system and a healthy gut microbiome keep it in check. However, if the microbiome gets out of balance or the immune system is severely compromised, C. albicans can enter the bloodstream. This can be life-threatening especially for immunocompromised people in intensive care units.
Researchers have now found that human intestinal cells play an important role in fighting fungal infections caused by C. albicans. "The intestinal cells nourish lactic acid bacteria, which thereby multiply and in turn take nutrients away from the yeast fungus," explains first author. The new conditions force C. albicans to adapt its metabolism, causing it to shed certain characteristics and making it less infectious. Adding the probiotics to the gut creates a balance between yeast, lactic acid bacteria and the rest of the microbiome, which restores a healthy state.
Infections with C. albicans, such as vulvovaginal infections, are already successfully treated with lactic acid bacteria. "We already know that lactic acid bacteria in particular can counteract a fungal infection, prevent it or even kill the fungus. Our work now addresses the question of 'how'," explains the senior author.
In collaboration with systems biologists at the institute, the researchers developed computer models that can predict how lactic acid bacteria of the species Lactobacillus rhamnosus behave when encountering C. albicans. "Using data from previous studies, our computer models can predict that the lactic acid bacteria would multiply and eventually counteract C. albicans," explains a junior group leader.
However, subsequent experiments in the lab showed that the bacteria did not multiply in conventional culture media as predicted. "Only when we added epithelial cells from the gut did the lactic acid bacteria begin to multiply," the author continued. The researchers were able to find out how the yeast fungus changes its metabolism to adapt to the new conditions. Since there are no longer enough nutrients in the intestine, there is an adjustment in the gene activity of C. albicans, which makes the yeast fungus less infectious and thus no longer able to damage the intestinal cells.
The results of this research form an important step forward in the fight against life-threatening fungal infections. "We want to find out how probiotics fight infection. With this knowledge, we may be able to develop measures to prevent the aggressive behavior of the fungus. The idea is to influence the fungus the way probiotics would, without actually using them," the senior author explains. Especially in immunosuppressed patients, he said, it is usually too dangerous to use live bacteria as a remedy.
https://www.nature.com/articles/s41467-022-30661-5
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Flactobacillus-rhamnosus&filter=22
Intestinal cells and lactic acid bacteria work together to protect against Candida infections
- 469 views
- Added
Latest News
Mosquitoes have neuronal fail-safes to make sure they can always smell humans
Detecting gut microbes that activate immune cells
Shell microelectrode arrays (MEAs) for brain organoids
Why heat makes us sleepy
Nasal spray peptide can reduce seizure activity, protect neurons in Alzheimer's
Other Top Stories
Brain 'switch' tells body to burn fat after a meal!
Skin transplants to treat diabetes and obesity!
Why cholesterol level raises in long term diabetics?
Heart hormones protect against obesity and insulin resistance
Obese people lack cells with satiety hormones
Protocols
Simultaneous recording of neuronal and vascular activity in the rodent brain using fiber- photom…
VDJdb in the pandemic era: a compendium of T cell receptors specifc for SARS-CoV-2
A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mecha…
An improved organotypic cell culture system to study tissue-resident macrophages ex vivo
Protocol for spike-triggered closed-loop auditory stimulation during sleep in patients with epilepsy
Publications
Bipolar-associated miR-499-5p controls neuroplasticity by downregulating the Cav1.2 subunit CACNB2
Non-canonical odor coding in the mosquito
LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weig…
Calcium homeostasis and cancer: insights from endoplasmic reticulum-centered organelle communicat…
Systemic inflammation after stroke: implications for post-stroke comorbidities
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER