Malaria parasites 'walk through walls' to infect humans

Malaria parasites 'walk through walls' to infect humans

Researchers have identified proteins that enable deadly malaria parasites to 'walk through cell walls' - a superpower that was revealed using the Institute's first insectary to grow human malaria parasites.

The research has identified two parasite proteins that are the key to this superpower. The proteins could be targeted to develop much-needed antimalarial drugs or vaccines. The findings were published in the journal Cell Reports.

When a person is infected with malaria, the parasite silently invades and multiplies in liver cells, but doesn't cause disease. The parasites then burst out of the liver and infect the blood, causing symptoms such as fever, chills, fatigue and muscle and joint pain that are characteristic of malaria.

The research confirmed the deadly malaria parasite Plasmodium falciparum had the ability to 'walk through cell walls' as it sought out liver cells where it could hide and multiply.

"The malaria infection cycle begins with a mosquito bite, when parasites are injected into the skin, and then rapidly move to the liver, " senior author said. "We have shown that P. falciparum employs a technique called cell traversal to quickly move through host cells in their path as they seek out liver cells to infect."

"Our study identified that P. falciparum parasites traverse human cells - effectively walking through cell walls - using two proteins called SPECT and PLP1 to achieve this superpower. This allows parasites to get from the skin to the liver very quickly following a mosquito bite."

Loss of either gene did not affect P. falciparum growth in erythrocytes, in contrast with a previous report that PfPLP1 is essential for merozoite egress. However, although traversal-deficient sporozoites could invade hepatocytes in vitro, they could not establish normal liver infection in humanized mice