Using innovative computer-based approaches, researchers have developed protein inhibitors that block the interaction between the SARS-CoV-2 virus and human cell receptor ACE2. In cell culture, the most potent of these inhibitors could neutralize virus infection, paving the way for their use in therapies that could be delivered more easily than antibodies.
SARS-CoV-2 infection generally begins in the nasal cavity. The monoclonal antibodies in development as treatments for COVID-19 are not ideal for intranasal delivery, however, as antibodies are large and often not extremely stable.
Small proteins that bind tightly to the SARS-CoV-2 spike and block the interaction with the human cellular receptor ACE2 may allow direct delivery through intranasal administration. Previous work in rodents has shown that intranasal delivery of small proteins designed to bind tightly to an influenza protein could provide protection against infection.
Here, using novel approaches to identify new, higher-affinity binding modes with the SARS-CoV-2 spike's receptor binding domain (RBD), the authors developed a series of inhibitors - optimized in their amino acid sequences for targeted binding, folding and stability - that bound to distinct regions of the RBD surface surrounding the ACE2 binding site.
When they evaluated their inhibitors in cell culture, several bound with particularly high affinities to SARS-CoV-2 and two neutralized the virus, preventing infection. The small proteins were stable after 14 days at room temperature, addressing concerns associated with cold storage needs required for some antibodies and vaccine candidates.
These "minibinders" provide starting points for SARS-CoV-2 therapeutics, the authors say. After further development, they could be used in a gel for nasal application, or for direct delivery into the respiratory system by nebulization.
"We will be exploring alternative routes of delivery in the months ahead as we seek to translate the high potency neutralizing proteins into SARS-CoV-2 therapeutics and prophylactics," they write. They also address the utility of their computational design-based approach for preparing against future pandemics.
https://science.sciencemag.org/CONTENT/EARLY/2020/09/08/SCIENCE.ABD9909
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fde-novo-design-of&filter=22
Mini proteins to treat COVID-19
- 621 views
- Added
Edited
Latest News
Dysregulation of the immune response leads to muscle damage in Duchenne muscular dystrophy
Axonal transport impaired by the loss of methylation of huntingtin
Modular complement assemblies for mitigating inflammatory conditions
Classification scheme developed for newly identified multiple sclerosis-like disease
Ebola virus protein exploits human RNA to change shape
Other Top Stories
How RNA molecules are organized in cells
Bone formation from calcium phosphate!
Transcription initiation is captured using cryo-electron microscopy!
Controlling enzyme activity remotely with radio frequency
Transporting proteins into the mitochondria
Protocols
Protocol for brain-wide or region-specific microglia depletion and repopulation in adult mice
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
Publications
A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosis-associated gene exp…
Huntingtin-mediated axonal transport requires arginine methylation by PRMT6
The converging roles of Batten disease proteins in neurodegeneration and cancer
Cellular mRNA triggers structural transformation of Ebola virus matrix protein VP40 to its essent…
Chronic stress physically spares but functionally impairs innate-like invariant T cells
Presentations
Axoplasmic transport
Neural Networks
MicroRNA
Multiple Sclerosis
BASIC PRINCIPLES OF IMMUNOTHERAPY
Posters
Lymphangiogenesis-inducing vaccines to treat melanomas
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE