With fall and winter holidays coming up, many will be pondering the relationship between food and sleep. Researchers hope they can focus people on the important middlemen in the equation: bacterial microbes in the gut. Their detailed study in mice revealed the extent to which bacteria can change the environment and contents of the intestines, which ultimately impacts behaviors like sleep.
The experiment itself was fairly simple. The researchers gave a group of mice a powerful cocktail of antibiotics for four weeks, which depleted them of intestinal microorganisms. Then, they compared intestinal contents between these mice and control mice who had the same diet. Digestion breaks food down into bits and pieces called metabolites. The research team found significant differences between metabolites in the microbiota-depleted mice and the control mice. As the senior author explains, "we found more than 200 metabolite differences between mouse groups. About 60 normal metabolites were missing in the microbiota-depleted mice, and the others differed in the amount, some more and some less than in the control mice."
The team next set out to determine what these metabolites normally do. Using metabolome set enrichment analysis, they found that the biological pathways most affected by the antibiotic treatment were those involved in making neurotransmitters, the molecules that cells in the brain use to communicate with each other. For example, the tryptophan-serotonin pathway was almost totally shut down; the microbiota-depleted mice had more tryptophan than controls, but almost zero serotonin. This shows that without important gut microbes, the mice could not make any serotonin from the tryptophan they were eating. The team also found that the mice were deficient in vitamin B6 metabolites, which accelerate production of the neurotransmitters serotonin and dopamine.
The team also analyzed how the mice slept by looking at brain activity in EEGs. They found that compared with the control mice, the microbiota-depleted mice had more REM and non-REM sleep at night--when mice are supposed to be active--and less non-REM sleep during the day--when mice should be mostly sleeping. The number of REM sleep episodes was higher both during the day and at night, whereas the number of non-REM episodes was higher during the day. In other words, the microbiota-depleted mice switched between sleep/wake stages more frequently than the controls.
The senior author speculates that the lack of serotonin was responsible for the sleep abnormalities; however, the exact mechanism still needs to be worked out. "We found that microbe depletion eliminated serotonin in the gut, and we know that serotonin levels in the brain can affect sleep/wake cycles," the author says. "Thus, changing which microbes are in the gut by altering diet has the potential to help those who have trouble sleeping."
So, this holiday season, when you're feeling sleepy after eating tryptophan-stuffed turkey, please don't forget to thank your gut microbes!
https://www.nature.com/articles/s41598-020-76562-9
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fgut-microbiota_5&filter=22
Normal sleep depends on gut bacteria
- 504 views
- Added
Edited
Latest News
Early signs of Parkinson's disease seen in general health parameters
Structural changes in G6PD causes common blood disorder
Reversing cognitive decline in ageing by restoring immune cell metabolism
Why remdesivir does not fully stop the coronavirus
Trash removal during deep sleep!
Other Top Stories
Children of depressed parents at high risk of adverse consequences into adulthood
Mutation protects against heart disease
Four new risk genes associated with multiple sclerosis discovered
Does chronic pain run in families?
Moms diet to affect offsprings inheritance through rDNA epigenetics
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
Reduced peroxisomal import triggers peroxisomal retrograde signaling
Shaping Neuronal Fate: Functional Heterogeneity of Direct Microglia-Neuron Interactions
Diabetes, obesity, metabolism and SARS-CoV-2 infection: The end of the beginning
Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential
The promise and peril of deep learning in microscopy
Presentations
Homeostasis
PLANT MITOCHONDRIAL BIOLOGY
Photosynthesis
Endocrine Disorders
THE PITUITARY GLAND
Posters
ACMT 2020 Annual Scientific Meeting Abstracts - New York, NY
Abstracts from the 2020 Annual Scientific Meeting of the British and Irish Hypertension Society (…
ACNP 58th Annual Meeting: Poster Session III
ACNP 58th Annual Meeting: Poster Session II
ACNP 58th Annual Meeting: Poster Session I