Scientists have revealed how the typhoid toxin works to hijack DNA repair machines and accelerate the aging of cells, a breakthrough that could pave the way for new strategies to combat the killer disease.
As part of the study, experts infected human cells in a lab with the bacterial pathogen for typhoid - Salmonella typhi. Using fluorescent microscopes to study how the toxin damaged the DNA at the molecular level, they discovered it induces a peculiar form of DNA damage; the toxin takes over DNA repair machines and accelerates cellular ageing, rendering them more susceptible to infection. In time, secretions from the infected cells can also cause aging in neighbouring cells, leading to faster aging at a cellular level.
Typhoid fever is a major killer in low- and middle-income countries, affecting 21 million people annually and causing 168,000 deaths. The infectious disease is a particular problem in South Asia where it is compounded by antimicrobial resistance and a lack of effective vaccines and diagnostics.
To cause typhoid, the bacterial pathogen Salmonella typhi releases the typhoid toxin, which damages cellular DNA. Our DNA is constantly under threat by environmental factors such as smoking and UV light, but cells usually have robust DNA repair machines to combat these threats. In the case of the typhoid toxin attacking our cells, it is this repair machine function that gets hijacked.
The findings, published in Nature Communications could potentially enable the toxin-associated cellular aging to be used as a biomarker to help with earlier diagnosis and faster treatment for typhoid sufferers.
The study lead said: "Our findings have shown that pathogenic bacteria can speed up cellular aging through a toxin and take advantage of this to establish infections. This makes sense as infections are often harder to combat and recover from as we get old, which is partly due to cellular ageing, but the fact that bacterial pathogens target this phenomenon is unexpected.
The co-lead said: "Until now, how the typhoid toxin of Salmonella typhi contributed to infection had been a mystery. If we are to combat typhoid, understanding how the toxin causes breaks in the DNA of human cells and promotes infection is key and we hope this find will be the first step in developing new strategies to control typhoid, which affects some of the world's most vulnerable communities."
Currently, no routine diagnostics exist for typhoid, which is often confused in the clinic with deadly fevers such as Malaria and Dengue. As a consequence, patients receive delayed antibiotic therapy, which causes clinical complications. Better diagnostics will improve clinical diagnoses and enable faster treatment, while also helping researchers quantify the extent of typhoid in endemic settings, which is needed to convince governments to implement public health/vaccine programmes.
The researchers now hope to further investigate how this discovery can be exploited to help us diagnose and treat typhoid as well as determine whether the RING phenotype is a signature of other diseases associated with DNA damage such as cancer.
https://www.nature.com/articles/s41467-019-12064-1
Latest News
Personalized brain modeling…
By newseditor
Posted 29 Jan
Afternoon chemotherapy impr…
By newseditor
Posted 29 Jan
Propionic acid protects ner…
By newseditor
Posted 28 Jan
How cells prevent harmful e…
By newseditor
Posted 28 Jan
Structured cerebellar conne…
By newseditor
Posted 28 Jan
Other Top Stories
Mitochondrial ROS Produced via Reverse Electron Transport Extend An…
Read more
Attacking tryptophan metabolism to treat neurodegenerative diseases
Read more
Researchers create artificial protein to control assembly of buckyb…
Read more
Mapping the circuit of our internal clock
Read more
Tension-sensitive molecule helps cells divide chromosomes accurately
Read more
Protocols
Machine learning prediction…
By newseditor
Posted 09 Jan
Differentiating PC12 cells…
By newseditor
Posted 09 Jan
Ultrasensitive sensors reve…
By newseditor
Posted 05 Jan
In vitro-derived medium spi…
By newseditor
Posted 04 Jan
Molecular and spatial signa…
By newseditor
Posted 30 Dec
Publications
HIF-1a accumulation in resp…
By newseditor
Posted 29 Jan
Electrical signals in the E…
By newseditor
Posted 29 Jan
Parathyroid hormone recepto…
By newseditor
Posted 29 Jan
Plasma biomarker profiles i…
By newseditor
Posted 29 Jan
Chemotherapy delivery time…
By newseditor
Posted 29 Jan
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar