Individuals with Down syndrome have less-frequent viral infections, but when present, these infections lead to more severe disease. New findings published in the journal Immunity show that this is caused by increased expression of an antiviral cytokine type I interferon (IFN-I), which is partially coded for by chromosome 21. Elevated IFN-I levels lead to hyperactivity of the immune response initially, but the body overcorrects for this to reduce inflammation, leading to increased vulnerability later in the viral attack.
“Usually too much inflammation means autoimmune disease, and immune suppression usually means susceptibility to infections,” says senior study author. “What is unusual is that individuals with Down syndrome are both inflamed and immunosuppressed, a paradox of sorts. Here, we discovered how this is possible.”
Down syndrome is typically caused by triplication of chromosome 21. This syndrome affects multiple organ systems, causing a mixed clinical presentation that includes intellectual disability, developmental delays, congenital heart and gastrointestinal abnormalities, and Alzheimer’s disease in older individuals.
Recently, it has become clear that atypical antiviral responses are another important feature of Down syndrome. Increased rates of hospitalization of people with Down syndrome have been documented for influenza A virus, respiratory syncytial virus, and severe acute respiratory syndrome due to coronavirus (SARS-CoV-2) infections.
While people with Down syndrome show clear signs of immune disturbance, it has yet to be elucidated how a supernumerary chromosome 21 leads to dysregulation of viral defenses. To address this knowledge gap, the researchers compared fibroblasts and white blood cells derived from individuals with and without Down syndrome, at both the mRNA and protein levels. They focused on the potent antiviral cytokine IFN-I receptor subunits IFNAR1 and IFNAR2, which are located on chromosome 21.
The researchers found that increased IFNAR2 expression was sufficient for the hypersensitivity to IFN-I observed in Down syndrome, independent of trisomy 21. But subsequently, the hyper-active IFN-I signaling cascade triggered excessive negative feedback via a protein called USP18, which is a potent IFNAR negative regulator. This process, in turn, suppressed further responses to IFN-I and antiviral responses. Taken together, the findings unveil oscillations of hyper- and hypo-responses to IFN-I in Down syndrome, predisposing to both lower incidence of viral disease and increased infection-related morbidity and mortality.
“We have a lot more to do to completely understand the complexities of the immune system in Down syndrome,” says the first author. “We have here, in part, explained the susceptibility to severe viral disease, but this is only the tip of the iceberg.”
https://www.cell.com/immunity/fulltext/S1074-7613(22)00501-5
Why people with Down syndrome develop severe viral infections
- 1,269 views
- Added
Latest News
Noncanonical cleavage mecha…
By newseditor
Posted 07 Jun
Reversing autoreactivity in…
By newseditor
Posted 07 Jun
Mapping metabolic fluxes in…
By newseditor
Posted 07 Jun
Regulation of fast twitch m…
By newseditor
Posted 07 Jun
Micro RNA mediated hair reg…
By newseditor
Posted 06 Jun
Other Top Stories
Brainstem neurons that act as steering wheel to control the movemen…
Read more
A central pain-suppression circuit in the amygdala activated by gen…
Read more
DNA repair enzyme linked to cognitive decline in aging mice
Read more
Multiple areas of the cerebral cortex influence the stomach
Read more
Artificial intelligence to analyze COVID-19 patients
Read more
Protocols
Using mass spectrometry ima…
By newseditor
Posted 07 Jun
Low-threshold, high-resolut…
By newseditor
Posted 05 Jun
Optical opening of the bloo…
By newseditor
Posted 04 Jun
Protocol to establish a gen…
By newseditor
Posted 03 Jun
Metaboverse enables automat…
By newseditor
Posted 02 Jun
Publications
The stress granule protein…
By newseditor
Posted 07 Jun
Revitalizing myocarditis tr…
By newseditor
Posted 07 Jun
Bioengineered particles exp…
By newseditor
Posted 07 Jun
Ketone bodies promote strok…
By newseditor
Posted 07 Jun
Sustained alternate-day fas…
By newseditor
Posted 07 Jun
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar