The researchers’ tailored electrodes, which they call 3-D electrodes, are unique in that they are extremely soft and flexible in all three dimensions, in a way that enables stable recordings from the neurons over a long time.
The electrode is so soft that it deflects against a water surface. In order to implant such electrodes, the researchers have developed a technique for encapsulating the electrodes in a hard but dissolvable gelatine material that is also very gentle on the brain.
“This technology retains the electrodes in their original form inside the brain and can monitor what happens inside virtually undisturbed and normally functioning brain tissue”, says the author.
Until now, developed flexible electrodes have not been able to maintain their shape when implanted, which is why they have been fixated on a solid chip that limits their flexibility, among other things. Other types of electrodes that are used are much stiffer. The result in both cases is that they rub against and irritate the brain tissue, and the nerve cells around the electrodes die.
“The signals then become misleading or completely non-existent. Our new technology enables us to implant as flexible electrodes as we want, and retain the exact shape of the electrode within the brain”, says the author.
“This creates entirely new conditions for our understanding of what happens inside the brain and for the development of more effective treatments for diseases such as Parkinson's disease and chronic pain conditions than can be achieved using today’s techniques”.
http://www.lunduniversity.lu.se/article/breakthrough-for-electrode-implants-in-the-brain
Edited
Latest News
Why snoring and disrupted sleep are associated with behavioral problems in children?
Pregnancy-associated breast cancer linked to inflammation
DNA supercoiling controls gene expression
Alterations in inhibitory synaptic transmission linked to spatial memory problems in Down syndrome
Reducing acetylated tau is neuroprotective in brain injury
Other Top Stories
Similar regions of the brain are involved in both spatial memory and smell detection!
A drug cocktail to increase lifespan in worms
A potassium channel may play a role in alcoholism!
Single cell RNA sequencing identifies distinct macrophage populations found in the liver!
The composition of gut bacteria almost recovers after antibiotics
Protocols
Protocol for brain-wide or region-specific microglia depletion and repopulation in adult mice
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
Publications
DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network
Mitochondria: new players in homeostatic regulation of firing rate set points
The emerging association between COVID-19 and acute stroke
Antiviral drug screen identifies DNA-damage response inhibitor as potent blocker of SARS-CoV-2 re…
Associations between frontal lobe structure, parent-reported obstructive sleep disordered breathi…
Presentations
Neural Networks
MicroRNA
Multiple Sclerosis
BASIC PRINCIPLES OF IMMUNOTHERAPY
Cell Organelles and their Functions
Posters
Lymphangiogenesis-inducing vaccines to treat melanomas
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE