Steatosis, the excessive accumulation of fat in the liver, is one of the most common diseases in developed societies, affecting almost 30% of the adult population. The disease is sometimes caused by obesity, diabetes, or excessive alcohol intake. The consequences can be serious: fatty liver can trigger cirrhosis and hepatic failure, contributes to the development of diabetes, and can lead to liver cancer. There are currently few treatment options for this disease.
Steatosis begins with an excessive accumulation in the liver of triglycerides, which stimulates an inflammatory response. Inflammation in many diseases involves contributions from p38 gamma and p38 delta, and the CNIC team discovered that the livers of obese patients express higher than normal levels of these proteins.
Using mice unable to express p38 gamma and p38 delta in neutrophils, a type of inflammatory cell, the research team showed that these two proteins control the migration of neutrophils to the liver. As the authors explain, "the arrival of these cells is necessary for the accumulation of fat in this tissue."
Therefore, inhibition of neutrophil migration in animals lacking p38 gamma and p38 delta would be enough to protect them from the development of fatty liver, thus preventing inflammation, liver damage, and even diabetes linked to obesity.
The only way to test for hepatic neutrophil recruitment in obese individuals is to take a liver biopsy. With the new discovery, it may become possible to prevent neutrophil infiltration by treating patients with specific inhibitors.
https://www.cnic.es/en/noticias/cnic-researchers-discover-new-target-treatment-fatty-liver-disease
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Link between alcohol and breast cancer!
Read more
Reclassification of kidney cancer into nine subtypes
Read more
Modulating Cholesterol Metabolism to Potentiate T-cell Antitumor Im…
Read more
Micro RNA controls cancer migration
Read more
How plant creates anticancer compounds
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar