Gut hormone secretin and brown fat interact to tell the brain it's time to stop eating

Gut hormone secretin and brown fat interact to tell the brain it's time to stop eating
 

Researchers have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing in the journal Cell, bolsters our understanding of a long-suspected role of brown adipose tissue (BAT)--a type of body fat known to generate heat when an animal is cold--in the control of food intake.

"We demonstrate a connection between the gut, the brain, and brown tissue, uncovering a previously unknown facet of the complex regulatory system controlling energy balance," says lead author. "The view of brown fat as a mere heater organ must be revised, and more attention needs to be directed towards its function in the control of hunger and satiation."

In their study, hungry mice that were injected with secretin had suppressed appetites. Injecting mice with secretin also increased the amount of heat that their brown fat produced. Mice with inactivated brown fat tissue, however, didn't experience the same appetite suppression when they were injected with the hormone--suggesting that it is secretin's effect on BAT that causes the feeling of fullness.

In addition to studying the effects of secretin on brown fat in mice, secretin levels were measured in 17 human volunteers. In a study in Finland, brown-tissue oxygen consumption and fatty-acid uptake were measured in participants' blood after overnight fasting and 30-40 minutes after a meal. Researchers found that higher levels of secretin in the subjects' blood corresponded to more metabolically active brown fat.

The senior author says that one day, we may know enough about the secretin-brown fat connection to stimulate secretin production by eating certain foods. "Any stimulus that activates brown fat thermogenesis could potentially induce satiation," the senior author says. "Secretin secretion is sensitive to nutrients, so eating the right starter could be helpful in promoting satiation and result in reduced meal size and caloric intake."'

The author believes that brown fat's roles in controlling hunger and satiation make it a particularly attractive target for new approaches to treating obesity. Targeting brown fat through secretin might hold promise for potential future nutritional or pharmacological interventions against obesity and metabolic disease, he says.


https://www.cell.com/cell/fulltext/S0092-8674(18)31324-2

http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fsecretin-activated&filter=22&keep_no_swfupload=1

Edited

Rating

Unrated
Rating: