Stevia extract is very popular as a non-caloric substitute for sugar. The plant-based sweetener is also believed to have a positive effect on blood sugar levels, although nobody understood why. Scientists have now revealed the underlying mechanism.
"Our experiments have shown that the active components of stevia extract, stevioside and steviol, stimulate the ion channel TRPM5," senior author explains. "TRPM5 is first and foremost essential for the taste perception of sweet, bitter, and umami on the tongue. The taste sensation is made even stronger by the stevia component steviol, which stimulates TRPM5. This explains the extremely sweet flavor of stevia as well as its bitter aftertaste."
TRPM5 also ensures that the pancreas releases enough insulin, for instance after a meal. Therefore, it helps prevent abnormally high blood sugar levels and the development of type 2 diabetes. This condition develops if the pancreas releases insufficient amounts of insulin, often as a result of an unhealthy lifestyle.
"If mice consume a high-fat diet for a long period of time they eventually develop diabetes," author explains. "But this is less the case for mice that also receive a daily dose of stevioside: they are protected against diabetes. Stevia did not have this protective effect on mice without TRPM5. This indicates that the protection against abnormally high blood sugar levels and diabetes is due to the stimulation of TRPM5 with stevia components."
The study opens up perspectives for the development of new treatments to control or possibly prevent diabetes. "But we must not get ahead of ourselves," warns senior author. "This is fundamental research, and there is still a long way to go before we can think of new treatments for diabetes. For one thing, the dosages that the mice received are much higher than the amount of stevioside found in beverages and other products for human consumption. Further research is necessary in order to show if our findings readily apply to humans. All this means that new treatments for diabetes will not be for the very near future."
https://nieuws.kuleuven.be/en/content/2017/ku-leuven-researchers-unravel-how-stevia-controls-blood-sugar-levels
http://www.nature.com/articles/ncomms14733
Latest News
A signaling molecule that potently stimulates hair growth
New pathway for accumulation of age-promoting 'zombie cells'
Protecting the brain from dementia-inducing abnormal protein aggregates
Why many cancer cells need to import fat
Role of nonsense-mediated mRNA decay (NMD) in fragile X-syndrome
Other Top Stories
Untangling the proteins that trigger some cancerous tumors
Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis
An omega-3 fatty acid kills tumor by ferroptosis
Extracellular mRNA transported to the nucleus prevents cancer metastasis
Cancer immunotherapy may self-limit its efficacy
Protocols
Light and electron microscopic imaging of synaptic vesicle endocytosis at mouse hippocampal cultures
FLAMBE: A kinetic fluorescence polarization assay to study activation of monomeric BAX
Single-cell mass spectrometry
A behavioral paradigm for measuring perceptual distances in mice
Rapid detection of an Ebola biomarker with optical microring resonators
Publications
Cough hypersensitivity and chronic cough
Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening
The why and how of adaptive immune responses in ischemic cardiovascular disease
Central role for p62/SQSTM1 in the elimination of toxic tau species in a mouse model of tauopathy
MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson's d…
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER