Obesity has increased rapidly in recent decades to affect more than 2 billion people, making it one of the largest contributors to poor health worldwide. Despite decades of research on diet and exercise treatments, many people continue to struggle to lose weight. Researchers anow think they know why, and say we must shift the focus from obesity treatment to prevention.
The team reports in the journal Science Advances that molecular mechanisms of brain development during early life are likely a major determinant of obesity risk. Previous large studies in humans have hinted that genes that are most strongly associated with obesity are expressed in the developing brain. This current study in mice focused on epigenetic development. Epigenetics is a system of molecular bookmarking that determines which genes will, or will not, be used in different cell types.
“Decades of research in humans and animal models have shown that environmental influences during critical periods of development have a major long-term impact on health and disease,” said the corresponding author. “Body weight regulation is very sensitive to such ‘developmental programming,’ but exactly how this works remains unknown.”
“In this study we focused on a brain region called the arcuate nucleus of the hypothalamus, which is a master regulator of food intake, physical activity and metabolism,” said the first author. “We discovered that the arcuate nucleus undergoes extensive epigenetic maturation during early postnatal life. This period is also exquisitely sensitive to developmental programming of body weight regulation, suggesting that these effects could be a consequence of dysregulated epigenetic maturation.”
The team conducted genome-wide analyses of both DNA methylation – an important epigenetic tag – and gene expression, both before and after closure of the postnatal critical window for developmental programming of body weight. “One of our study’s biggest strengths is that we studied the two major classes of brain cells, neurons and glia,” the author said. “It turns out that epigenetic maturation is very different between these two cell types.”
“Our study is the first to compare this epigenetic development in males and females,” the senior author said. “We were surprised to find extensive sex differences. In fact, in terms of these postnatal epigenetic changes, males and females are more different than they are similar. And, many of the changes occurred earlier in females than in males, indicating that females are precocious in this regard.”
The biggest surprise came when the investigators compared their epigenetic data in mice to human data from large genome-wide association studies that screen for genetic variants associated with obesity. The genomic regions targeted for epigenetic maturation in the mouse arcuate nucleus overlapped strongly with human genomic regions associated with body mass index, an index of obesity.
“These associations suggest that obesity risk in humans is determined in part by epigenetic development in the arcuate nucleus,” the author said. “Our results provide new evidence that developmental epigenetics is likely involved in both early environmental and genetic influences on obesity risk. Accordingly, prevention efforts targeting these developmental processes could be the key to stopping the worldwide obesity epidemic.”
https://www.science.org/doi/10.1126/sciadv.abo3991
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fsex-specific-epigenetic&filter=22
Is obesity a neurodevelopmental disorder?
- 1,259 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Serotonin's role in sleep!
Read more
Promoting vascular repair following stroke
Read more
Sexual hormone oestradiol protects female brain in mid-life
Read more
Detecting hidden consciousness after brain injury with EEG and arti…
Read more
Trauma leads to PTSD only in some but not others - why?
Read more
Protocols
D-LMBmap: a fully automated…
By newseditor
Posted 30 Sep
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Publications
Alteration in the chromatin…
By newseditor
Posted 30 Sep
Identification of genes req…
By newseditor
Posted 29 Sep
Mitochondrial degradation:…
By newseditor
Posted 29 Sep
The promise of new anti-obe…
By newseditor
Posted 29 Sep
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar