To save patients with a severe form of type 1 diabetes (characterized by the absence of functional insulin-producing cells), pancreatic cell transplantation is sometimes the last resort. The pancreas contains cell clusters - called islets of Langerhans - where cells that produce blood glucose regulating hormones are grouped together.
However, the transplant process is long and complex: a significant part of the grafted cells die quickly without being able to engraft. By adding amniotic epithelial cells to these cell clusters, researchers have succeeded in creating much more robust "super-islets" of Langerhans. Once transplanted, more of them engraft; they then start producing insulin much more rapidly. These results, are published in Nature Communications, would not only improve the success of cell transplants, but also offer new perspectives for other types of transplants, including stem cell transplantation.
Today, islet transplantation is one of the last-chance options for patients with a particularly severe form of type 1 diabetes. The islets are removed from a donor's pancreas, isolated and then re-injected into the patient's liver. "The procedure is well controlled - about fifteen patients benefit from it every year in Switzerland - but nevertheless complex, says the research lead. Many of the islets die along the way. It often takes several donors to treat one person, whereas we are in desperate need of donors."
To improve the success of islet transplantation and the survival of transplanted cells, researchers have sought to create new, more robust islets that would withstand the stress of transplantation better than natural islets. To do this, they came up with the idea of adding amniotic epithelial cells, taken from the wall of the inner placenta membrane, to the pancreatic cells.
"These cells, very similar to stem cells, are already used in other therapies, such as corneal repair for example," says the co-director of this work. "In our case, we found that they can promote the function of pancreatic cells, which is to produce hormones according to fluctuations in sugar levels."
First step, in vitro: the addition of amniotic epithelial cells allowed the cell clusters to form regular spheres, indicating better intracellular communication and connectivity. Second step in vivo: the scientists transplanted their "super-islets" of Langerhans into diabetic mice, which quickly began to produce insulin. "Even with few cell clusters, our super islets adapted very well to their new environment and quickly became vascularized," says the first author of this work. A good vascularization is indeed the key element of any transplantation: it allows to supply the new organ with oxygen and nutrients and guarantees their survival. In addition, the artificial islets quickly began to produce insulin.
Amniotic epithelial cells are thus essential to islet survival and seem to act on two vital elements: the lack of oxygen, which usually kills a large number of transplanted islets, and the modulation of the host immune system to limit the risk of rejection. "In any transplant, the first step is to lower the recipient's immunity to limit the risk of rejection, says the lead. Amniotic epithelial cells have the unique characteristic of protecting the foetus, which is also a "non-self," from attacks by its mother's immune system. We believe that the same mechanism is at work to protect the grafts." The protective mechanism, observed here on cell transplants, could also take place in other types of transplants or even in xenotransplantation - where non-human cells or organs are transplanted into humans.
These discoveries now need to be confirmed on human subjects. Since the use of amniotic epithelial cells is already common in other clinical settings without adverse side effects, this could be done relatively quickly. An important hope for all those waiting for a transplant.
https://www.nature.com/articles/s41467-019-12472-3
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Finsulin-producing&filter=22
Organoids from islet and amniotic epithelial cells to treat diabetes
- 4,095 views
- Added
Edited
Latest News
Linking endosomal trafficking to aggressive brain cancer
Overactive food quality control system triggers food allergies
How plants produce defensive toxins without harming themselves
Artificially infect mosquitoes with human malaria to identify new chemicals
Basophil-neuronal axis in acute itch in eczema
Other Top Stories
New disease mechanism for type 2 diabetes
Mechanism of β cell dysfunction in type 2 diabetes (T2D)
How neurons modulate pancreatic insulin production
Broccoli extract controls glucose levels in type 2-diabetes
Thyroid hormone receptors in the brain linked to obesity!
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
An Arf/Rab cascade controls the growth and invasiveness of glioblastoma
Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV P…
MCT1 Deletion in Oligodendrocyte Lineage Cells Causes Late-Onset Hypomyelination and Axonal Degen…
Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis
MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells
Presentations
Homeostasis
PLANT MITOCHONDRIAL BIOLOGY
Photosynthesis
Endocrine Disorders
THE PITUITARY GLAND
Posters
ACMT 2020 Annual Scientific Meeting Abstracts - New York, NY
Abstracts from the 2020 Annual Scientific Meeting of the British and Irish Hypertension Society (…
ACNP 58th Annual Meeting: Poster Session III
ACNP 58th Annual Meeting: Poster Session II
ACNP 58th Annual Meeting: Poster Session I