Too much sugar? There's an enzyme for that

Too much sugar? There's an enzyme for that

Scientists have discovered an enzyme that can stop the toxic effects of sugar in various organs of the body. This enzyme, named glycerol 3-phosphate phosphatase (G3PP), plays a central role in controlling glucose and fat utilization.
 
The research team has demonstrated that G3PP is able to detoxify excess sugar from the cells, and their discovery should lead to the development of therapeutics for obesity and type 2 diabetes. The findings were published today in the journal Proceedings of the National Academy of Sciences.

Mammalian cells use glucose and fatty acids as the main nutrients. Their utilization inside cells governs many physiological processes such as insulin secretion by beta cells, production of glucose in liver, storage of fat in adipose tissue and breakdown of nutrients for energy production. Derangement of these processes leads to obesity, type 2 diabetes and cardiovascular diseases.

The beta cells sense changes in blood glucose levels and produce insulin according to body demand. Insulin is an important hormone for controlling glucose and fat utilization. However, when beta cells are presented with excess glucose and fatty acids, the same nutrients become toxic and damage them, leading to their dysfunction and diabetes.

 When glucose is being used in cells, glycerol-3-phosphate is formed, and this molecule is central to metabolism, since it is needed for both energy production and fat formation.

"By diverting glucose as glycerol, G3PP prevents excessive formation and storage of fat and it also lowers excessive production of glucose in liver, a major problem in diabetes," says the author.

The work offers a new therapeutic target for obesity, type 2 diabetes and metabolic syndrome. The research team is currently in the process of discovering "small molecule activators of G3PP" to treat cardiometabolic disorders. These drugs will be unique in their mode of action and first of their kind in this class of drugs. The treatment will first have to be confirmed in several animal models before drugs for human use can be developed.

http://www.pnas.org/content/early/2016/01/07/1514375113
 
Edited

Rating

Item has a rating of 1 1 vote
Rating: