As sessile organisms, plants have to continually adapt their growth and architecture to the ever-changing environment. To do so, plants have evolved distinct molecular mechanisms to sense and respond to the environment and integrate the signals from outside with endogenous developmental programs.
New research published in Nature Plants, unravels the underlying mechanism of protein targeting and destruction in a specific plant hormone signaling pathway.
“Our lab aims at deciphering sensing mechanisms in plants and understanding how specific enzymes function can be regulated at the molecular levels” said the senior author. “We have been studying a new plant hormone signal, strigolactone, that governs numerous processes of growth and development including branching and root architecture.”
The work stems from a study by the author, published in Nature in 2018, unravelling molecular and structural changes in an enzyme, MAX2 (or D3) ubiquitin ligase. MAX2 was found in locked or unlocked forms that can recruit a strigolactone sensor, D14, and target for destruction a DNA transcriptional repressor complex, D53. Ubiquitins are small proteins, found in all eukaryotes, that “tag” other proteins for destruction within a cell.
To find the key to unlock MAX2 and to better understand its molecular dynamics in plants, the researchers used an approach that integrated advanced structural biology, biochemistry, and plant genetics.
“We leveraged structure-guided approaches to systemically mutate MAX2 enzyme in Arabidopsis and created a MAX2 stuck in an unlocked form”, said the author, “some of these mutations were made by guiding CRISPR/Cas9 genome editing thus providing us a discovery platform to study and analyze the different signaling outputs and illuminate the role of MAX2 dynamics.”
They found that in the unlocked conformation, MAX2 can target the repressor proteins and biochemically decorate them with small ubiquitin proteins, tagging them for destruction. Removing these repressors allows other genes to be expressed – activating a massive gene network that governs shoot branching, root architecture, leaf senescence, and symbiosis with fungi, the author said.
Sending these repressors to the proteasome disposal complexes requires the enzyme to relock again. The team also showed that MAX2 not only target the repressors proteins, but once it is locked the strigolactone sensor itself gets destroyed, returning the system to its original state.
Finally, the study uncovered the key to the lock, an organic acid metabolite that can directly trigger the conformational switch.
“Beyond the implication in plants signaling, this is the first work that placed a primary metabolite as a direct new regulator of this type of ubiquitin ligase enzymes and will open new avenues of study in this direction,” the author said.
https://www.nature.com/articles/s41477-022-01145-7
A conformational switch in the ubiquitin ligase facilitates strigolactone signalling
- 1,246 views
- Added
Edited
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
After 15 years in a vegetative state, nerve stimulation restores co…
Read more
Novel protein interactions explain memory deficits in Parkinson's d…
Read more
Back stiffness may not be clinically stiff back!
Read more
Generating 2 types of heart cells from fibroblasts
Read more
Epigenetics of addiction!
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar