As the world’s soils continue to be impacted by salt, threatening food production, researchers have identified a protein that plays a crucial role in helping plants like sorghum grow in alkaline, salty soils. The findings could inform the design of crops better suited to grow in underutilized sodic lands.
Ensuring global food security in the future relies on continued agricultural production. However, due to climate change, declines in freshwater availability, and the widespread application of chemical fertilizers, agricultural soils worldwide are expected to become saltier, which could become a global problem affecting agricultural production.
Alkaline sodic soils – those with higher pH levels and dominated by sodium carbonate and sodium bicarbonate salts – inhibit a plant’s ability to take in nutrients and manage salt stress. However, relatively little is known about plant alkaline tolerance, limiting the development of crops well suited for sodic soils.
The researchers performed a genome-wide association study of plant growth in alkaline conditions using sorghum, a widely cultivated cereal crop known to be naturally tolerant to alkaline soils, and identified Alkaline Tolerance 1 (AT1) – a major locus specially related to the plant’s sensitivity to alkaline, sodic soils. AT1 encodes an atypical G protein γ subunit that regulates phosphorylation of aquaporins, which mediate the oxidative stress caused by alkaline conditions.
Although overexpression of the protein resulted in higher sensitivity to alkaline stress, the researchers found that gene knockout of AT1 in sorghum as well as its homologs in millet, rice, and maize increased the plant’s alkaline tolerance. These plants also produced higher yields when grown in alkaline soils in field trials.
The findings suggest that designing knockouts of AT1 homologs in crops could improve their productivity in salty soils, opening up millions of hectares of sodic land to agriculture.
https://www.science.org/doi/10.1126/science.ade8416
A Gγ protein regulates alkaline sensitivity in crops
- 1,180 views
- Added
Latest News
Humans can intermittently r…
By newseditor
Posted 04 Dec
Why young kids don't get se…
By newseditor
Posted 04 Dec
Phosphatidylinositol 3,5-bi…
By newseditor
Posted 04 Dec
Probiotic-guided CAR-T cell…
By newseditor
Posted 04 Dec
Cell atlases of the human b…
By newseditor
Posted 04 Dec
Other Top Stories
New factor that regulates pluripotency of stem cells identified!
Read more
Micro RNAs improve maturity of stem cell derived cardiomyocytes
Read more
A barrier against brain stem cell aging
Read more
Calcitonin receptor (Calcr) prevents relocation and maintenance of…
Read more
Exosomes help in the differentiation of mesenchymal stem cells to n…
Read more
Protocols
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Publications
Behavioral and brain respon…
By newseditor
Posted 04 Dec
Toward low-cost gene therap…
By newseditor
Posted 04 Dec
The bidirectional immune cr…
By newseditor
Posted 04 Dec
Leveraging human immune org…
By newseditor
Posted 04 Dec
Single-cell long-read seque…
By newseditor
Posted 04 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar