A high content of sodium-containing salts in the soil is a problem for many plants: as a result, they grow less well, or not at all. Soil salinisation is seen as one of the greatest threats to being able to feed the world’s population because it makes soils increasingly infertile, especially in dry regions.
A team of researchers has now found a mechanism in thale cress (Arabidopsis thaliana) which enables plants to provide protection against salt stress for their sensitive stem cells in the meristem at the root tip. The meristem, which ensures that the root constantly forms new cells and can thus grow, is particularly sensitive: in contrast to fully formed plant cells, its cells have no vacuole inside where harmful substances can be disposed of.
The discovery that plants can provide protection against toxic salt stress specifically for individual groups of cells came as something of a surprise to the researchers. Although it was already known that there are various mechanisms in plants enabling them to cope with high salt contents in soil water – one is an active transportation of salt out of the cells, another is the mechanical impregnation of a specific cell layer in the root – what was not known was that plants also specifically protect the stem cells in their roots.
“The signalling pathway we have discovered – which combines components of known salt-stress signalling pathways with signalling proteins for the purpose of controlling root development – serves the additional purpose of specifically detoxifying the plant,” says the author.
The mechanism in detail: a special enzyme – a receptor-like kinase called GSO1 – transports the sodium out of the cells of the meristem. To this end, GSO1 activates the kinase SOS2 (SOS stands for “salt overly sensitive”), and this in turn activates a transport protein (SOS1) which pumps sodium ions outwards, via the cell membrane, and, in return, transports protons into the cell. In the case of salt stress, there is an increased formation of GSO1 especially in the meristem cells.
In addition, the team demonstrated that GSO1 also helps to prevent too much salt from penetrating into the vascular tissue of the root. This vascular tissue is located in the interior of the plant and transports water and minerals from the roots into the leaves. By a mechanical barrier, the Casparian strip, it is protected from minerals dissolved in the soil water penetrating into it in an uncontrolled fashion. The researchers also demonstrated a higher GSO1 content in the cells forming the Casparian strip increases due to salt stress.
“GSO1 is a receptor kinase well known in plant developmental biology,” says the author. “It plays an important role in various stages in a plant’s development. Now, for the first time, we were able to demonstrate that it also plays a role in salt tolerance and activates the ‘sodium-out pump’ via an alternative signalling pathway which is presumably not dependent on calcium.” Calcium signals in the cells play a key role in other known adaptive responses of plants to salt stress.
https://www.embopress.org/doi/full/10.15252/embj.2022113004
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fa-salt-stress-activated&filter=22
A new mechanism for sodium salt detoxification in plants
- 825 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
How gut microbiota triggers inflammation from toothpaste compound t…
Read more
Epstein-Barr virus may be leading cause of multiple sclerosis
Read more
How bamboo diet keeps giant panda chubby
Read more
Human immune family of cell death proteins also found in bacteria
Read more
The genomic structure of microbial communities can predict metaboli…
Read more
Protocols
D-LMBmap: a fully automated…
By newseditor
Posted 30 Sep
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Publications
Functional architecture of…
By newseditor
Posted 04 Oct
The Nobel Prize in Physics…
By newseditor
Posted 04 Oct
Monoamines' role in islet c…
By newseditor
Posted 03 Oct
A cholinergic circuit that…
By newseditor
Posted 03 Oct
The emerging role of recept…
By newseditor
Posted 02 Oct
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar