A protein that synchronizes the circadian clocks in shoots and roots identified

A protein that synchronizes the circadian clocks in shoots and roots identified

Five years ago, researchers made the breakthrough discovery that the circadian clocks in the growing tip of the plant shoot function in a similar way to the clocks in the mammalian brain, which in both cases are able to synchronize the daily rhythms of the cells in distal organs. From that seminal finding, plant researchers have been eager to discover the messenger molecule that could travel from the shoot to the root to orchestrate the rhythms. The answer is just being published in the prestigious Nature Plants. They have identified a small essential clock protein, named ELF4, as the needed messenger. Furthermore, through a series of ingenious experiments, the researchers have discovered that the movement of this molecule is sensitive to the ambient temperature.

Every plant cell contains a circadian clock, that is, it contains all the machinery needed to adapt its responses to the 24 hour-cycle. Nevertheless, as researchers published in a seminal article in Cell (2015), plants, as mammals, have a master circadian clock, which synchronizes peripheral clocks dispersed throughout the plant. The senior author explains: "we knew that there was a circadian signal that moves from shoots to roots, but we did not know about the nature of this signal. It could have been hormones, photosynthetic products... Now, we have discovered that it is a core protein of the circadian clock that moves though the plant vasculature."

The researchers designed ingenious grafting experiments with the model plant Arabidopsis thaliana, connecting different shoots into several roots in which the clock was not working properly. These experiments allowed them to identify the clock protein ELF4, an acronym that accounts for "EARLY FLOWERING 4", as the messenger that moves from shoots to roots to convey circadian information.

Anyone who has ever experienced jet lag, knows that, luckily, the circadian biological clock is able to reset itself by environmental light cues, allowing the body to adapt to the new time zone within few days. In the same way that the circadian clock can synchronize to environmental light, it can also integrate information about ambient temperature.

To discern if the ELF4 protein was transmitting to the roots information about light or temperature changes, the two main regulators of the circadian clock, the researchers tested ELF4 movement under different environmental conditions. They discovered that at lower temperatures (12?C), ELF4 mobility from shoots to roots was favoured, resulting in a slow-paced root clock. Instead, when the experiments were performed at higher temperatures (28?C), they observed less ELF4 movement, which lead to a faster root clock. This newly described mechanism could provide an advantage for optimal root responsiveness to temperature variations.

All this knowledge gathered with a small model plant, could have an impact in the near future. "Climate change and the associated higher temperatures are causing drought, which is already affecting crop productivity in agriculture. Knowing the genes and proteins that plants use to adapt their physiology to the environmental conditions will allow us to design better adapted crops, which will be key to ensure food security", explains the author.