For the first time, researchers have proven that multigene bioengineering of photosynthesis increases the yield of a major food crop in field trials. After more than a decade of working toward this goal, a collaborative team has transgenically altered soybean plants to increase the efficiency of photosynthesis, resulting in greater yields without loss of quality.
Realizing Increased Photosynthetic Efficiency, or RIPE, is an international research project that aims to increase global food production by improving photosynthetic efficiency in food crops for smallholder farmers in Sub-Saharan Africa.
“The number of people affected by food insufficiency continues to grow, and projections clearly show that there needs to be a change at the food supply level to change the trajectory,” said the lead author. “Our research shows an effective way to contribute to food security for the people who need it most while avoiding more land being put into production. Improving photosynthesis is a major opportunity to gain the needed jump in yield potential.”
Photosynthesis, the natural process all plants use to convert sunlight into energy and yield, is a surprisingly inefficient 100+ step process that RIPE researchers have been working to improve for more than a decade. In this first-of-its-kind work, recently published in Science, the group improved the VPZ construct within the soybean plant to improve photosynthesis and then conducted field trials to see if yield would be improved as a result.
The VPZ construct contains three genes that code for proteins of the xanthophyll cycle, which is a pigment cycle that helps in the photoprotection of the plants. Once in full sunlight, this cycle is activated in the leaves to protect them from damage, allowing leaves to dissipate the excess energy. However, when the leaves are shaded (by other leaves, clouds, or the sun moving in the sky) this photoprotection needs to switch off so the leaves can continue the photosynthesis process with a reserve of sunlight. It takes several minutes for the plant to switch off the protective mechanism, costing plants valuable time that could have been used for photosynthesis.
The overexpression of the three genes from the VPZ construct accelerates the process, so every time a leaf transitions from light to shade the photoprotection switches off faster. Leaves gain extra minutes of photosynthesis which, when added up throughout the entire growing season, increases the total photosynthetic rate. This research has shown that despite achieving a more than 20% increase in yield, seed quality was not impacted.
The researchers first tested their idea in tobacco plants because of the ease of transforming the crop’s genetics and the amount of seeds that can be produced from a single plant. These factors allow researchers to go from genetic transformation to a field trial within months. Once the concept was proven in tobacco, they moved into the more complicated task of putting the genetics into a food crop, soybeans.
“Having now shown very substantial yield increases in both tobacco and soybean, two very different crops, suggests this has universal applicability,” said the author. “Our study shows that realizing yield improvements is strongly affected by the environment. It is critical to determine the repeatability of this result across environments and further improvements to ensure the environmental stability of the gain.”
Additional field tests of these transgenic soybean plants are being conducted this year, with results expected in early 2023.
“The major impact of this work is to open the roads for showing that we can bioengineer photosynthesis and improve yields to increase food production in major crops,” said another author. “It is the beginning of the confirmation that the ideas ingrained by the RIPE project are a successful means to improve yield in major food crops.”
“This has been a road of more than a quarter century for me personally,” said the author. “Starting first with a theoretical analysis of theoretical efficiency of crop photosynthesis, simulation of the complete process by high-performance computation, followed by application of optimization routines that indicated several bottlenecks in the process in our crops. Funding support over the past ten years has now allowed us to engineer alleviation of some of these indicated bottlenecks and test the products at field scale. After years of trial and tribulation, it is wonderfully rewarding to see such a spectacular result for the team.”
https://www.science.org/doi/10.1126/science.adc9831
Bioengineering better photosynthesis to increase food crop yields
- 1,858 views
- Added
Latest News
The benefits and downside o…
By newseditor
Posted 18 Sep
How aging immune system fue…
By newseditor
Posted 18 Sep
Brain cells that plan where…
By newseditor
Posted 12 Sep
A common fatty acid may hel…
By newseditor
Posted 12 Sep
Transcription factor functi…
By newseditor
Posted 12 Sep
Other Top Stories
How plants fight major root disease
Read more
Genome editing used to create disease resistant rice
Read more
Cell type-specific mapping of ion distribution in Arabidopsis thali…
Read more
Treating ataxia using plant extracts from indigenous people
Read more
Controlling plant regeneration!
Read more
Protocols
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Fully defined NGN2 neuron p…
By newseditor
Posted 10 Sep
Clinical utility of a blood…
By newseditor
Posted 06 Sep
A glia-enriched stem cell 3…
By newseditor
Posted 01 Sep
Publications
Short-term post-fast refeed…
By newseditor
Posted 18 Sep
Epigenetic regulation of he…
By newseditor
Posted 18 Sep
Defining microglial-synapse…
By newseditor
Posted 18 Sep
Hematopoietic aging promote…
By newseditor
Posted 18 Sep
Heterogeneity of Residual D…
By newseditor
Posted 18 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar