When faced with conditions that are too dry, salty, or cold, most plants try to conserve resources. They send out fewer leaves and roots and close up their pores to hold in water. If circumstances don’t improve, they eventually die.
But some plants, known as extremophytes, have evolved to handle harsh environments. Schrenkiella parvula, a scraggly, branching member of the mustard family, doesn’t just survive in conditions that would kill most plants – it thrives in them. It grows along the shores of Lake Tuz in Turkey, where salt concentrations in the water can be six times higher than in the ocean. In a recent paper published in Nature Plants, researchers found that Schrenkiella parvula actually grows faster under these stressful conditions.
“Most plants produce a stress hormone that acts like a stop signal for growth,” said the senior author of the paper. “But in this extremophyte, it’s a green light. The plant accelerates its growth in response to this stress hormone.”
The researchers are studying Schrenkiella parvula to better understand how some plants cope with challenging conditions. Their findings could help scientists engineer crops that are able to grow in lower-quality soil and adapt to the stresses of climate change.
“With climate change, we can’t expect the environment to stay the same,” said a lead author on the paper. “Our crops are going to have to adapt to these rapidly changing conditions. If we can understand the mechanisms that plants use to tolerate stress, we can help them do it better and faster.”
Schrenkiella parvula is a member of the Brassicaceae family, which contains cabbage, broccoli, turnips, and other important food crops. In areas where climate change is expected to increase the duration and intensity of droughts, it would be valuable if these crops were able to weather or even thrive in those dry spells.
When plants encounter dry, salty, or cold conditions – all of which create water-related stress – they produce a hormone called abscisic acid, or ABA. This hormone activates specific genes, essentially telling the plant how to respond. The researchers examined how several plants in the Brassicaceae family, including Schrenkiella parvula, responded to ABA. While the other plants’ growth slowed or stopped, the roots of Schrenkiella parvula grew significantly faster.
Schrenkiella parvula is closely related to the other plants in the study and has a very similar-sized genome, but ABA is activating different sections of its genetic code to create a completely different behavior.
“That rewiring of that network explains, at least partially, why we’re getting these different growth responses in stress-tolerant species,” the senior author said.
Understanding this stress response – and how to engineer it in other species – could help more than just food crops, the authorsaid. Schrenkiella parvula is also related to several oilseed species that have the potential to be engineered and used as sustainable sources of jet fuel or other biofuels. If these plants can be adapted to grow in harsher environmental conditions, there would be more land available for cultivating them.
“You want to be growing bioenergy crops on land that is not suitable for growing food – say, an agricultural field that has degraded soil or has accumulated salinity because of improper irrigation,” the author said. “These areas are not prime agricultural real estate, but land that would be abandoned otherwise.”
The researchers are continuing to investigate the network of responses that could help plants survive in extreme conditions. Now that they have an idea of how Schrenkiella parvula sustains its growth in the face of limited water and high salinity, they will try to engineer related plants to be able to do the same by tweaking which genes are activated by ABA.
“We’re trying to understand what the secret sauce is for these plant species – what allows them to grow in these unique environments, and how we can use this knowledge to engineer specific traits in our crops,” the author said.
https://www.nature.com/articles/s41477-022-01139-5
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fdivergence-in-a-stress&filter=22
Extreme' plants grow faster in the face of stress
- 1,357 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Reprogramming mature mouse GABA neurons into dopaminergic neurons
Read more
A single molecule fluorosequencing to sequence millions of proteins…
Read more
A new screening method to detect protein-protein and protein-RNA in…
Read more
Stent monitoring with non-invasive technique!
Read more
Delivering mRNA directly to target cells!
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar