Researchers have revealed that the female gamete in flowering plants controls fertilization recovery by secreting pollen tube attractants.
The researchers, who explored why ovules continue to attract pollen tubes after failed double fertilization, have also provided molecular clues for the survival of some plant species after the loss of synergid cells during evolution.
The study was published in Cell.
Seed production by fertilization is essential for plant reproduction and seed crop yield. As early as 1904, botanists observed the interesting phenomenon of more than one pollen tube being attracted into an ovule. This process, called "fertilization recovery," was thought to be caused by fertilization failure. This failure was presumed to trigger the attraction of extra pollen tubes, thus rescuing fertilization by bringing in more sperm cells. The underlying mechanism was not explained, however.
Generally, the embryo sac of flowering plants (also known as angiosperms) contains two synergid cells, two female gametes (i.e., one egg cell and one central cell), and three antipodal cells. Over the past two decades, a growing body of evidence has demonstrated that synergid cells play a critical role in secreting pollen tube attractants, thereby facilitating successful fertilization. Scientists had proposed that these two synergid cells give the plant a second chance to restore fertilization if the first synergid fails to attract a pollen tube containing two fertile sperm cells.
However, recent research has shown that Arabidopsis thaliana ovules, with their two synergid cells experimentally removed, can still attract pollen tubes and produce seeds. This observation suggested the existence of an alternative mechanism for fertilization recovery.
A previous study by the group suggested that the central cell, as an endosperm precursor, is also critical for pollen tube attraction. To investigate whether the central cell could secrete a pollen tube attractant, the researchers measured the pollen tube attraction activity of more than a hundred secreted peptides expressed in the central cell. They eventually found that two of them, SALVAGER1 (SAL1) and SAL2, show pollen tube attraction activity and can bind to the pollen tube plasma membrane.
Interestingly, they found that SAL1/2 localized in the central cell are secreted into the micropyle and funiculus when synergid cells are defective or eliminated by the gcs1 mutant pollen tubes, which carry infertile sperm cells. These results suggest that SALs are new types of pollen tube attractants.
In addition, sal1/2 knockout mutants lost the ability, controlled by female gametes, to restore fertilization. Subsequent investigations revealed functional redundancy between SAL1/2 and the synergid cell attraction system in successful fertilization.
Furthermore, a similar study conducted on Arabidopsis lyrata, a sister species of Arabidopsis thaliana, demonstrated the evolutionary conservation of the central-cell-secreted SALs in the fertilization recovery mechanism.
In summary, the researchers have uncovered a central-cell-controlled fertilization recovery mechanism that is important for ensuring reproduction success.
https://www.cell.com/cell/fulltext/S0092-8674(23)00731-6
Latest News
How formaldehyde affects ep…
By newseditor
Posted 30 Nov
Distinct brain activity tri…
By newseditor
Posted 30 Nov
AI based histologic biomark…
By newseditor
Posted 30 Nov
Repairing nerve cells after…
By newseditor
Posted 30 Nov
A gene regulating fat stora…
By newseditor
Posted 30 Nov
Other Top Stories
Mindfulness meditation trumps placebo in pain reduction
Read more
Burn Induces Browning of the Subcutaneous White Adipose Tissue
Read more
Lead exposure impacts children's sleep
Read more
Sunscreen ingredient may prevent medical implant infections
Read more
Surgeons at NYU Langone Medical Center perform the most extensive f…
Read more
Protocols
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Microfluidic-based skin-on-…
By newseditor
Posted 28 Nov
Biology-guided deep learnin…
By newseditor
Posted 26 Nov
Accurate prediction of prot…
By newseditor
Posted 25 Nov
Publications
Pleiotrophin ameliorates ag…
By newseditor
Posted 30 Nov
Mitf is a Schwann cell sens…
By newseditor
Posted 30 Nov
OsHLP1 is an endoplasmic-re…
By newseditor
Posted 30 Nov
Probiotic treatment with Bi…
By newseditor
Posted 30 Nov
Metabolic immunity against…
By newseditor
Posted 30 Nov
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar