Synthesizing large quantities of natural compounds in tomato

Synthesizing large quantities of natural compounds in tomato
 

Scientists have found a way to produce industrial quantities of useful natural compounds efficiently, by growing them in tomatoes.

The compounds are phenylpropanoids like Resveratrol, the compound found in wine which has been reported to extend lifespan in animal studies, and Genistein, the compound found in soybean which has been suggested to play a role in prevention of steroid-hormone related cancers, particularly breast cancer.

One tomato can produce the same quantity of Resveratrol as exists in 50 bottles of red wine. One tomato has also produced the amount of Genistein found in 2.5kg of tofu.

A protein called AtMYB12 which is found in Arabidopsis thaliana activates a broad set of genes involved in metabolic pathways responsible for producing natural compounds of use to the plant. The protein acts a bit like a tap to increase or reduce the production of natural compounds depending on how much of the protein is present.

What was interesting about the effect of introducing this protein into a tomato plant was how it acted to both increase the capacity of the plant to produce natural compounds (by activating phenylpropanoid production) and to influence the amount of energy and carbon the plant dedicated to producing these natural compounds. In response to the influence of the atmyb12 protein, tomato plants began to create more phenylpropanoids and flavanoids and to devote more of energy to doing this in fruit.

Introducing both AtMYB12 and genes from plants encoding enzymes specific for making Resveratrol in grape and Genistein in legumes, resulted in tomatoes that could produce as much as 80mg of novel compound per gram of dry weight - demonstrating that industrial scale up is possible.

Tomatoes are a high yielding crop -- producing up to 500 tonnes per hectare in countries delivering the highest yields (FAOSTAT 2013) and require relatively few inputs, therefore production of valuable compounds like

Resveratrol or Genistein in tomatoes could be a more economical way of producing them than relying on artificial synthesis in a lab or extracting them in tiny quantities from traditional plant sources (e.g., grapes, soybeans, etc.). The tomatoes can be harvested and juiced and the valuable compounds can be extracted from the juice. The tomatoes themselves could potentially become the source of increased nutritional or medicinal benefit.

http://www.nature.com/ncomms/2015/151026/ncomms9635/full/ncomms9635.html

Edited

Rating

Unrated
Rating: