The process by which memories are formed in the hippocampus region of the brain is complex. It relies on a precise choreography of interactions between neurons, neurotransmitters, receptors and enzymes.
A new mouse study has identified an intricate molecular process involving gene expression in the neurons that appears to play a critical role in memory consolidation. The research was published in Science Signaling.
“This is an exciting mechanism. It shows that an enzyme like phosphodiesterase is key in controlling gene expression necessary for memory consolidation,” said the senior author of the paper.
The new study focuses on the central adrenergic system. The ability to pay attention, which is essential in learning and memory, is controlled by the central adrenergic system in the brain.
To understand the components critical for memory, the researchers looked at beta-2 adrenergic receptors. The receptors are present in different cell types throughout the body. They are also found on nerve cells in the hippocampal region of the brain.
The researchers show that when beta-2 adrenergic receptors are activated — through a series of molecular steps known as a signaling pathway — they stimulate the nucleus of the neuron to export an enzyme, phosphodiesterase 4D5 (PDE4D5).
Previous studies have identified PDE4D5 as having a role in promoting learning and memory.
A crucial step to stimulating this memory-related gene expression — the export of PDE4D5 — appears to be the attachment of a phosphate group (known as phosphorylation) to the receptor. This is accomplished by an enzyme known as a kinase.
The kinase involved in this case is a G-protein receptor kinase.
The researchers used genetically altered mice to test whether phosphorylation of the beta-2 adrenergic receptors by G-protein receptor kinase was necessary for gene expression — the export of the PDE4D5 enzyme.
The mice lacked a phosphorylation site on their beta-2 adrenergic receptors, meaning their neurons could not follow the normal signaling pathway when the receptors were activated.
The researchers found that, as expected, these genetically altered mice exhibited poor memory related to space and location. This is the same memory pathway that is disrupted during the early stages of Alzheimer’s disease.
However, when they provided the memory-impaired mice with a drug known as a PDE4 inhibitor (comparable to the PDE4D5 enzyme that would normally be exported), the mice’s ability to learn and retain memories was increased.
“The gene expression forms the material foundation of the memory in your brain. If you don't have gene expression, you won't have memory,” the author explained.
The use of PDE inhibitors is being explored for Alzheimer’s disease. Studies of the PDE5 inhibitor sildenafil, known as Viagra, have had mixed results. A 2021 NIH study found Viagra was associated with a reduced risk of Alzheimer’s disease, but a later study found Viagra was not associated with lower Alzheimer’s risk.
“We need to understand what is causing impairment in diseases like Alzheimer’s so we can find interventions that allow patients to regain ability or slow down the disease progression,” said the author. “This study highlights the potential of PDE inhibitors in rescuing memory in Alzheimer’s patients.”
https://www.science.org/doi/10.1126/scisignal.ade3380
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Farrestin-dependent&filter=22
Molecular process involving gene expression in memory consolidation
- 554 views
- Added
Latest News
Viruses such as SARS-CoV-2…
By newseditor
Posted 09 Jun
A pair of brain regions pro…
By newseditor
Posted 09 Jun
How the gut microbiome resp…
By newseditor
Posted 08 Jun
Noncanonical cleavage mecha…
By newseditor
Posted 07 Jun
Reversing autoreactivity in…
By newseditor
Posted 07 Jun
Other Top Stories
A common herbicide compound to fight fungal infection
Read more
Viruses in blood damage gut neurons leading to digestive problems
Read more
How fatal biofilms form
Read more
Alzheimer's disease from periodontal bacteria?
Read more
Probiotic Bacillus eliminates Staphylococcus bacteria
Read more
Protocols
Hardwiring tissue-specific…
By newseditor
Posted 08 Jun
Using mass spectrometry ima…
By newseditor
Posted 07 Jun
Low-threshold, high-resolut…
By newseditor
Posted 05 Jun
Optical opening of the bloo…
By newseditor
Posted 04 Jun
Protocol to establish a gen…
By newseditor
Posted 03 Jun
Publications
SARS-CoV-2 infection and vi…
By newseditor
Posted 09 Jun
Cancer-cell-derived fumarat…
By newseditor
Posted 09 Jun
Green light induces antinoc…
By newseditor
Posted 08 Jun
Arginine depletion attenuat…
By newseditor
Posted 08 Jun
Activity-dependent local pr…
By newseditor
Posted 08 Jun
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar