The MGAT5 glycosylation enzyme plays a crucial role in brain development, according to a study, a discovery that may contribute to new therapeutic purposes for neural stem cells.
Neurons, astrocytes and oligodendrocytes are the final mature cells of the brain and spinal cord formed by neural stem cells. Each has distinct and key functions. Neurons transmit signals, astrocytes help modify those signals, and oligodendrocytes keep the signals from degrading. When any cells make proteins or fats that end up on the cell surface, they often add small sugar molecules. The team tested whether this internal process – called glycosylation – affects how neural stem cells form mature brain cells.
The study, published in the journal Stem Cell Reports, found that during glycosylation, the MGAT5 enzyme significantly regulates the formation of neurons and astrocytes from neural stem cells. Neural stem cells that don’t have MGAT5 make more neurons and fewer astrocytes during the very early stages of brain development, altering its structure. These changes may contribute to later aberrant behavior patterns, including abnormal social interactions and repetitive actions.
“Now that we know MGAT5 and glycosylation have a substantial impact on neuron and astrocyte formation, we have a better idea of how our nervous system develops,” said corresponding author. “We hope these findings will contribute to the use of neural stem cells for therapeutic purposes by providing new information about the factors regulating these cells.”
It was known that neural stem cells respond to the external signals they encounter during development. But it was not known whether neural stem cells could modify their responses to those signals. The team analyzed the role of glycosylation enzymes in brain maturation by comparing control mice to those whose neural stem cells did not have the MGAT5 enzyme. It found that neural stem cells use glycosylation to manage their reactions to external signals and regulate the development of mature brain cells.
“As we continue our work, we hope to determine which cell surface proteins and pathways controlled by glycosylation are critical for neuron and astrocyte formation,” the author said. “This will give us better insight into the external signals significantly modified by neural stem cell glycosylation, which will, in turn, help to decode the complex processes that occur during brain development and expand the therapeutic usefulness of neural stem cells.”
https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(23)00141-8
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fregulation-of-neural&filter=22
A glycosylation enzyme critical for brain formation identified!
- 657 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
How preterm birth may impact language development
Read more
A person's future intellectual capabilities may be set in motion du…
Read more
Mechanism of Schizophrenia
Read more
Culturing human placenta stem cells for first time
Read more
Another protein preventing synapse elimination identified
Read more
Protocols
D-LMBmap: a fully automated…
By newseditor
Posted 30 Sep
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Publications
Functional architecture of…
By newseditor
Posted 04 Oct
The Nobel Prize in Physics…
By newseditor
Posted 04 Oct
Monoamines' role in islet c…
By newseditor
Posted 03 Oct
A cholinergic circuit that…
By newseditor
Posted 03 Oct
The emerging role of recept…
By newseditor
Posted 02 Oct
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar