Scientists have discovered a new method of creating human stem cells which could solve the big problem of the large-scale production needed to fully realize the potential of these remarkable cells for understanding and treating disease.
Human pluripotent stem cells are undifferentiated cells which have the unique potential to develop into all the different types of cells in the body. With applications in disease modelling, drug screening, regenerative medicine and tissue engineering, there is already an enormous demand for these cells, which will only grow as their use in the clinic and by the pharmaceutical industry increases.
However, production of stem cells at the scale required for optimal application in modern healthcare is currently not feasible because available culture methods are either too expensive, or reliant on substances that would not be safe for clinical use in humans.
In this new piece of research, published in Nature Communications, a team of researchers have identified an improved method for human stem cell culture that could lead to quicker and cheaper large scale industrial production.
The first author said: "By using a protein derived from human blood called Inter-alpha inhibitor, we have grown human pluripotent stem cells in a minimal medium without the need for costly and time-consuming biological substrates. Inter-alpha inhibitor is found in human blood at high concentrations, and is currently a by-product of standard drug purification schemes.
"The protein can make stem cells attach on unmodified tissue culture plastic, and improve survival of the stem cells in harsh conditions. It is the first stem cell culture method that does not require a pre-treated biological substrate for attachment, and therefore, is more cost and time-efficient and paves the way for easier and cheaper large-scale production."
Lead supervisor said: "As coating is a time-consuming step and adds cost to human stem cell culture, this new method has the potential to save time and money in large-scale and high-throughput cultures, and be highly valuable for both basic research and commercial applications."
Co-author on the paper added: "We now intend to combine Inter-alpha inhibitor protein with our innovative hydrogel technology to improve on current methods to control cell differentiation and apply it to disease modelling. This will help research into many diseases but our focus is on understanding rare conditions like Multiple Osteochondroma (an inherited disease associated with painful lumps developing on bones) at the cellular level. Our aim is to replicate the 3 dimensional environment that cells experience in the body so that our lab-bench biology is more accurate in modelling diseases."
http://www.nottingham.ac.uk/news/pressreleases/2016/july/breakthrough-in-scaling-up-life-changing-stem-cell-production.aspx
Breakthrough in scaling up life-changing stem cell production
- 1,607 views
- Added
Edited
Latest News
Gene expression signature t…
By newseditor
Posted 02 Jun
The mechanisms behind swall…
By newseditor
Posted 02 Jun
A new mechanism for sodium…
By newseditor
Posted 02 Jun
How inherited neurodegenera…
By newseditor
Posted 02 Jun
Slowing down muscular dystr…
By newseditor
Posted 02 Jun
Other Top Stories
Signaling mechanism controlling directional cell movement
Read more
Infants use expectations to shape their brains
Read more
How to teach critical thinking
Read more
Wnt signaling is required for differentiation niche in stem cells
Read more
Regulator of liver development and growth identified
Read more
Protocols
Protocol to establish a gen…
By newseditor
Posted 03 Jun
Metaboverse enables automat…
By newseditor
Posted 02 Jun
Ratphones: An Affordable To…
By newseditor
Posted 31 May
BigNeuron: A resource to be…
By newseditor
Posted 29 May
Designed active-site librar…
By newseditor
Posted 27 May
Publications
ER proteostasis regulators…
By newseditor
Posted 03 Jun
Gene expression signature p…
By newseditor
Posted 02 Jun
Prox2 and Runx3 vagal senso…
By newseditor
Posted 02 Jun
Insulin detection in diabet…
By newseditor
Posted 02 Jun
A salt stress-activated GSO…
By newseditor
Posted 02 Jun
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar