Leigh syndrome is the most severe mitochondrial disease in children. It causes severe muscle weakness, movement defects, and intellectual disabilities. It usually leads to death within the first years of life. No causative treatment is currently available.
One of the genes frequently mutated in patients is SURF1, which encodes for a protein involved in the process of energy generation in the cells. Animal models did not recapitulate the defects seen in the patients carrying mutations in SURF1. Therefore, the scientists did not have the tool to start understanding the disease mechanisms and to identify possible targets for treatment. They report about the first human model for this rare disease in Nature Communications.
The group has now developed the first human model of Leigh syndrome caused by SURF1 mutations.
To achieve this, the authors employed the technology of cellular reprogramming, which enables to convert cells from the skin into stem cells that are capable of generating neurons. They then used the molecular scissors CRISPR/Cas9 to precisely remove the mutation from the patient cells and to introduce the mutations into the control cells. Thus the authors were able to investigate the specific effect of SURF1 mutations in a controlled genetic background. They next generated neurons and brain organoids, which are of a three-dimensional structure and reproduce the features of early human brain development.
Using these models, the authors discovered that the neuronal defects seen in the patients may be caused by an energy deficit occurring at the level of neural precursors, which are the cells that generate neurons. These energy defects lead to insufficient neuronal branching, which causes improper brain function during development. Finally, the authors demonstrate that the neuronal branching defects can be corrected by improving the energy output of progenitor cells using SURF1 gene replacement therapy or by using the drug Bezafibrate, which is currently safe for clinical use in children.
These findings are important since they provide for the first time a model for studying the neuronal pathology of Leigh syndrome caused by SURF1 mutations. Moreover, they indicate practical strategies for treating children affected by the rare disease Leigh syndrome, which is an orphan disease with high medical needs.
https://www.nature.com/articles/s41467-021-22117-z
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fdefective-metabolic&filter=22
Defective metabolic programming in the first human model for rare disease-Leigh Syndrome
- 362 views
- Added
Edited
Latest News
First patient-derived tumoroid model for cervical cancer
Brain signaling disrupted by plasticisers
Histone chaperones and molecular chaperones combine to protect histone proteins on route to chrom…
Why snoring and disrupted sleep are associated with behavioral problems in children?
Pregnancy-associated breast cancer linked to inflammation
Other Top Stories
The artificial neural connection system replaces damaged nerve pathway
Remodeling of brain functional architecture from alcohol dependence and abstinence
Artificial muscle sheets transform stem cells into bone
Artificial intelligence used to predict 3D structure of proteins
Edible 'security tag' to protect drugs from counterfeit
Protocols
Protocol for brain-wide or region-specific microglia depletion and repopulation in adult mice
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
Publications
Brain ethanol metabolism by astrocytic ALDH2 drives the behavioural effects of ethanol intoxication
Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberc…
Bisphenols exert detrimental effects on neuronal signaling in mature vertebrate brains
DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network
Mitochondria: new players in homeostatic regulation of firing rate set points
Presentations
Neural Networks
MicroRNA
Multiple Sclerosis
BASIC PRINCIPLES OF IMMUNOTHERAPY
Cell Organelles and their Functions
Posters
Lymphangiogenesis-inducing vaccines to treat melanomas
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE