By linking human population studies with experiments in cell and animal models, researchers have provided evidence that complex mixtures of endocrine disrupting chemicals impact children’s brain development and language acquisition. With their novel approach, the scientists show that up to 54 per cent of pregnant women were exposed to experimentally defined levels of concern. While current risk assessment tackles chemicals one at a time, these findings show the need to take mixtures into account for future risk assessment approaches.
There is increasing evidence that environmental chemicals to which we are continuously exposed can have endocrine disrupting properties and can thus be dangerous to human and animal health and development. Every year sees the release of a huge number of new compounds as part of the market authorization and production processes of a vast range of goods, chiefly but not only plastic derivatives, that enter the human body from several sources, including water, food and air.
While exposure levels for individual chemicals are often below existing limit values, exposure to the same chemicals in complex mixtures can still impact human health. Yet all existing risk assessments, and thus established limit values, are based on chemicals being examined one at a time. There was thus a strong need to test whether an alternative strategy would be possible, in which the actual mixtures measured in real life exposures could be tested as such in both the epidemiological and experimental setting.
The study was conducted in three steps:
• Firstly, a mixture of chemicals in the blood and urine of pregnant women was identified in the Swedish pregnancy cohort SELMA, associated with delayed language development in children at 30 months. This critical mixture included a number of phthalates, bisphenol A, and perfluorinated chemicals.
• Secondly, experimental studies uncovered the molecular targets through which human-relevant levels of this mixture disrupted the regulation of endocrine circuits and of genes involved in autism and intellectual disability.
• Thirdly, the findings from the experimental studies were used to develop new principles for risk assessment of this mixture.
"It is striking that the findings in the experimental systems well reflected what we found in the epidemiological part, and that the effects could be demonstrated at normal exposure levels for humans," says the senior author.
"Human brain organoids (advanced in vitro cultures that reproduce salient aspects of human brain development) afforded, for the first time, the opportunity to directly probe the molecular effects of this mixture on human brain tissue at stages matching those measured during pregnancy. Alongside other experimental systems and computational methods, we found that the mixture disrupts the regulation of genes linked to autism (one of whose hallmarks is language impairment), hinders the differentiation of neurons and alters thyroid hormone function in neural tissue," says the Principal Investigator.
"One of the key hormonal pathways affected was thyroid hormone. Optimal levels of maternal thyroid hormone are needed in early pregnancy for brain growth and development, so it’s not surprising that there is an association with language delay as a function of prenatal exposure," says another author.
By linking different scientific methods in this way, the researchers were able to show that 54 per cent of children included in the study were at risk of delayed language development (at age 30 months) as they were prenatally exposed to a mixture of chemicals at levels that were above the levels predicted to impact neurodevelopment. This risk did not become apparent when the current limit values for individual chemicals were used.
https://www.science.org/doi/10.1126/science.abe8244
Exposure to chemical mixtures during pregnancy alters brain development
- 1,180 views
- Added
Edited
Latest News
A signaling molecule that potently stimulates hair growth
New pathway for accumulation of age-promoting 'zombie cells'
Protecting the brain from dementia-inducing abnormal protein aggregates
Why many cancer cells need to import fat
Role of nonsense-mediated mRNA decay (NMD) in fragile X-syndrome
Other Top Stories
A yeast model of metabolic disorders
Alzheimer's disease detection in a blood test 16 years before cognitive symptoms
Preventing drug relapse by erasing cocaine associated environmental cues
Nuclear corepressors (NCOR1/2) link the feeding and memory brain areas
Transgenerational transmission of acquired adaptability to the offspring
Protocols
Light and electron microscopic imaging of synaptic vesicle endocytosis at mouse hippocampal cultures
FLAMBE: A kinetic fluorescence polarization assay to study activation of monomeric BAX
Single-cell mass spectrometry
A behavioral paradigm for measuring perceptual distances in mice
Rapid detection of an Ebola biomarker with optical microring resonators
Publications
Cough hypersensitivity and chronic cough
Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening
The why and how of adaptive immune responses in ischemic cardiovascular disease
Central role for p62/SQSTM1 in the elimination of toxic tau species in a mouse model of tauopathy
MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson's d…
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER