Telomeres (the protective structures located at the ends of chromosomes) are essential to the stability of our genetic material and to maintain the "youthful state" of our cells and of our bodies. However, telomeres get shorter as we age. Once they reach a critical length, cells enter a state of senescence or die. This is one of the molecular causes of cellular ageing and of the emergence of ageing-related diseases.
Now researchers have succeeded in creating mice in the laboratory from stem cells with hyper-long telomeres and with reduced molecular ageing, avoiding the use of what to date has been the standard method: genetic manipulation. This new technique based on epigenetic changes that is described in the journal Nature Communications, avoids the manipulation of genes in order to delay molecular ageing. The study also underlines the importance of this new strategy in generating embryonic stem cells and iPS cells with long telomeres for use in regenerative medicine.
"The in vitro expansion of the embryonic stem cells results in the elongation of the telomeres up to twice their normal length" explained the authors. A lengthening that occurs thanks to the active natural mechanisms without alterations in the telomerase gene.
However, would these cells be capable of developing into a mouse with telomeres that are much longer than normal and that would age more slowly? In the paper published today in Nature Communications, proves that this is the case.
The cells with hyper-long telomeres in these mice appear to be perfectly functional. When the tissues were analysed at various moments (0, 1, 6 and 12 months of life), these cells maintained the additional length scale (they shortened over time but at a normal rhythm), accumulated less DNA damage and had a greater capacity to repair any damage. In addition, the animals presented a lower tumor incidence than normal mice.
In highly renewing compartments, such as the blood, cells with hyper-long telomeres are longitudinally maintained or enriched with age. Authors further show that wound-healing rates in the skin are increased.
These results show that pluripotent stem cells that carry hyper-long telomeres can give rise to organisms with telomeres that remain young at the molecular level for longer. According to the authors, this "proof of concept means that it is possible to generate adult tissue with longer telomeres in the absence of genetic modifications".
The next step for the Group is already working on will be to "generate a new species of mice in which the telomeres of all the cells are twice as long as those in normal mice", explains the author.
http://www.cnio.es/ing/publicaciones/mice-with-hyper-long-telomeres-without-altering-the-genes
Mice with hyper-long telomeres created!
- 3,185 views
- Added
Edited
Latest News
Manipulating mitochondrial…
By newseditor
Posted 07 Dec
Guiding cells to natural ta…
By newseditor
Posted 07 Dec
Mechanism of nucleolar vacu…
By newseditor
Posted 06 Dec
Traumatic memories can rewi…
By newseditor
Posted 06 Dec
The tongue might also detec…
By newseditor
Posted 06 Dec
Other Top Stories
Breaking down processed foods by human gut microbes
Read more
RNA splicing errors mediated by tau linked to Alzheimer's disease
Read more
Compromised nuclear maintenance implicated in aging!
Read more
A protein controlling benzodiazepine action identified!
Read more
Linking synaptic activity to sleep!
Read more
Protocols
Brain-wide circuit-specific…
By newseditor
Posted 05 Dec
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Publications
rRNA intermediates coordina…
By newseditor
Posted 06 Dec
Epigenomic dissection of Al…
By newseditor
Posted 06 Dec
Activity-dependent organiza…
By newseditor
Posted 06 Dec
Innate immunity: the bacter…
By newseditor
Posted 06 Dec
The proton channel OTOP1 is…
By newseditor
Posted 06 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar