A research team found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). Published in Nature Communications, the team's discovery offers a new way to fast-track screening methods used in stem cell research.
iPSCs are derived from cells, usually taken from skin or blood, that have been genetically reprogrammed to revert back to an embryonic-like state, which enables the cells to differentiate into any cell type in the body. iPSC technology is a hugely important new platform for the study of human diseases in the laboratory, and, offers the potential to develop transformative cell replacement therapies, for example, by creating hepatic cells to treat liver disease and stem cells to treat leukaemia and other blood cancers.
It is the ability of iPSCs to differentiate to other cell types that makes them so valuable for laboratory research, however not all iPSCs offer the same differentiation capacity, some cell lines are markedly defective.
"When generating iPSCs it is clearly beneficial to identify 'good' and 'bad' cell lines" explains the research lead. "Good cell lines offer optimal differentiation capacity and are therefore the most useful for research. However establishing the quality of these cell lines using traditional ways of assessment is costly and time-consuming. We were looking to find a way to expedite this process and we think part of the solution lies in using DNA methylation as a biomarker for differentiation capacity".
DNA methylation is a physical modification to the genetic material (DNA) of a cell, which can alter the behaviour of that cell. In this study, the team were looking for a particular type of methylation that only occurs in stem cells, known as non-CG methylation, to see if they could identify a link between non-CG methylation and differentiation capacity of iPSCs.
Author says: "The role of a pluripotent stem cell is to generate all three germ layers: mesoderm, endoderm and ectoderm. These germ layers then develop into all cells of the body. For this study, we focussed specifically on a pluripotent stem cell's ability to differentiate into the endodermal lineage - the lineage for organs such as liver, pancreas and thyroid gland. Once we had collected and examined our data we were immediately struck by a link - we could confidently report that a reduction in non-CG methylation is associated with impaired differentiation capacity into endodermal lineages."
"The main point of this study is that we have found an epigenetic biomarker that can help us distinguish iPSCs that have a diminished capacity for differentiation. This discovery can be used to reduce costly and time-consuming analysis methods, while simultaneously offering improvements in large-scale assessment of iPSC lines for clinical and therapeutic applications." adds the author.
http://www.nature.com/ncomms/2016/160129/ncomms10458/full/ncomms10458.html
Edited
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Reducing tau levels in excitatory neurons soon after birth can prev…
Read more
Brain circuit that helps in finding your car in a parking lot
Read more
PHGDH expression and Alzheimer's disease
Read more
Older men with high body-mass index have more sperm cell irregulari…
Read more
Channels for CSF to enter the skull bone marrow and its implications
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar