In the journal Stem Cell Reports, unearthed the new kind of stem cells - induced XEN cells, or iXEN - in a cellular trash pile, of sorts.
A great deal of stem cell research focuses on new ways to make and use pluripotent stem cells. Pluripotent stem cells can be created by reactivating embryonic genes to "reprogram" mature adult cells. Reprogramming mature cells into induced pluripotent stem cells, or iPS cells, allows them to become malleable building blocks that can morph into any cell in the body.
For example, if a patient has a defective liver, healthy cells could be taken from the patient, reprogrammed into iPS cells, which could then be used to help regenerate the person's failing organ. Taking cells from the same patient may greatly reduce the chance of the body rejecting the new treatment.
Prior to the discovery of reprogramming, scientists developed pluripotent stem cells from embryos. However, the embryo produces not only pluripotent stem cells, but also XEN cells, a stem cell type with unique properties. While pluripotent stem cells produce cells in the body, XEN cells produce extraembryonic tissues that play an essential but indirect role in fetal development.
The team speculated that if the embryo produces both pluripotent and XEN cells, this might also occur during reprogramming.
The eureka moment came when they discovered colonies of iXEN cells popping up like weeds in his iPS cell cultures. Using mice models, the team spent six months proving that these genetic weeds are not cancer-like, as previously suspected, but in fact, a new kind of stem cell with desirable properties.
Even more surprising, the team found that by inhibiting expression of XEN genes during reprogramming, they could decrease production of iXEN cells and increase production of iPS cells.
The next steps of this research will involve seeing if this process occurs in human cells. XEN cells have yet to be discovered in humans, but the possibility of their existence is a key focus of the field.
http://msutoday.msu.edu/news/2016/msu-discovers-a-new-kind-of-stem-cell/
New kind of stem cells discovered!
- 2,123 views
- Added
Edited
Latest News
Personalized brain modeling…
By newseditor
Posted 29 Jan
Afternoon chemotherapy impr…
By newseditor
Posted 29 Jan
Propionic acid protects ner…
By newseditor
Posted 28 Jan
How cells prevent harmful e…
By newseditor
Posted 28 Jan
Structured cerebellar conne…
By newseditor
Posted 28 Jan
Other Top Stories
Brain cells that suppress cravings identified!
Read more
Dual and opposing role for a single protein in the brain
Read more
Receptor Protein in Brain Promotes Resilience to Stress
Read more
The molecular mechanisms behind addiction and relapse
Read more
AI neural network detects heart failure from single heartbeat
Read more
Protocols
Machine learning prediction…
By newseditor
Posted 09 Jan
Differentiating PC12 cells…
By newseditor
Posted 09 Jan
Ultrasensitive sensors reve…
By newseditor
Posted 05 Jan
In vitro-derived medium spi…
By newseditor
Posted 04 Jan
Molecular and spatial signa…
By newseditor
Posted 30 Dec
Publications
HIF-1a accumulation in resp…
By newseditor
Posted 29 Jan
Electrical signals in the E…
By newseditor
Posted 29 Jan
Parathyroid hormone recepto…
By newseditor
Posted 29 Jan
Plasma biomarker profiles i…
By newseditor
Posted 29 Jan
Chemotherapy delivery time…
By newseditor
Posted 29 Jan
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar