Red blood cells are the most common cells in the human body, and are necessary in order to transport oxygen and carbon dioxide. Millions of people worldwide suffer from anaemia -- a condition in which the patient has an insufficient amount of red blood cells.
Patients with chronic anaemia are among the most problematic cases. They receive regular blood transfusions from different donors, which can eventually lead to the patient developing a reaction to the new blood. They simply become allergic to the donor's blood. Finding a feasible way to make blood from an individual's own skin cells would bring relief to this group of patients.
Eight days. That's how long it takes for skin cells to reprogram into red blood cells. Researchers have successfully identified the four genetic keys that unlock the genetic code of skin cells and reprogram them to start producing red blood cells instead.
"We have performed this experiment on mice, and the preliminary results indicate that it is also possible to reprogram skin cells from humans into red blood cells. One possible application for this technique is to make personalized red blood cells for blood transfusions, but this is still far from becoming a clinical reality", says senior author.
With the help of a retrovirus, they introduced different combinations of over 60 genes into the skin cells' genome, until one day they had successfully converted the skin cells into red blood cells. The study is published in the scientific journal Cell Reports.
Researchers show that Gata1, Tal1,Lmo2, and c-Myc (GTLM) can rapidly convert murine and human fibroblasts directly to iEPs (erythroid progenitors). The transcriptional signature of murine iEPs resembled mainly that of primitive erythroid progenitors in the yolk sac, whereas addition of Klf1 or Myb to the GTLM cocktail resulted in iEPs with a more adult-type globin expression pattern.
"This is the first time anyone has ever succeeded in transforming skin cells into red blood cells, which is incredibly exciting", says lead author of the study.
The study shows that out of 20,000 genes, only four are necessary to reprogram skin cells to start producing red blood cells. Also, all four are necessary in order for it to work.
"It's a bit like a treasure chest where you have to turn four separate keys simultaneously in order for the chest to open", explains the researcher.
The discovery is significant from several aspects. Partly from a biological point of view -- understanding how red blood cells are produced and which genetic instructions they require - but also from a therapeutic point of view, as it creates an opportunity to produce red blood cells from the skin cells of a patient. There is currently a lack of blood donors for, for instance, patients with anaemic diseases. However, further studies on how the generated blood performs in living organisms are needed.
http://www.lu.se/article/roda-blodkroppars-genetiska-kod-upptackt
Red blood cells from skin fibroblasts!
- 4,338 views
- Added
Edited
Latest News
Humans can intermittently r…
By newseditor
Posted 04 Dec
Why young kids don't get se…
By newseditor
Posted 04 Dec
Phosphatidylinositol 3,5-bi…
By newseditor
Posted 04 Dec
Probiotic-guided CAR-T cell…
By newseditor
Posted 04 Dec
Cell atlases of the human b…
By newseditor
Posted 04 Dec
Other Top Stories
A well-known plant substance slows down aggressive eye cancer
Read more
Protein BRCA1 keeps neuroblastoma stable
Read more
Kinase-phosphatase ratio linked to pancreatic cancer survival
Read more
High-fructose corn syrup promotes colon tumor growth in mice
Read more
Brain tumor grows for 2-7 years before detection
Read more
Protocols
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Publications
Behavioral and brain respon…
By newseditor
Posted 04 Dec
Toward low-cost gene therap…
By newseditor
Posted 04 Dec
The bidirectional immune cr…
By newseditor
Posted 04 Dec
Leveraging human immune org…
By newseditor
Posted 04 Dec
Single-cell long-read seque…
By newseditor
Posted 04 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar