Microcephaly is a rare disease that causes intellectual disability and seizures. A genetic form of microcephaly manifests as the fetal brain develops during pregnancy; the cerebral cortex, a large brain structure responsible for abstract thought, memory and language, is particularly vulnerable to the disorder.
The research group previously discovered that mice missing a single copy of a gene called Magoh have severely reduced brain size reminiscent of genetic microcephaly in people. The group zeroed in on neural stem cells which divide to form either a new stem cell or the beginning of a new neuron cell. The previous study found that the number of neural stem cells seemed out of balance with the number of neurons being produced in the Magoh-deficient brains.
The researchers suspected that the time it takes for one stem cell to divide into two -- a process called mitosis -- could be responsible for the imbalance. Other microcephaly-linked genes are known to control mitosis. But how mitosis defects caused microcephaly was unknown.
In the new study, Silver's team found that about 30% of the stem cells in mice lacking Magoh took longer -- in some cases two or three times longer than usual -- to divide.
As scientists watched those cells using cutting-edge live imaging techniques, they were surprised to see that the sluggish stem cells tended to differentiate into neurons, and were also more likely to die.
"It's really a combination that helps explain the microcephaly," author said. "On one hand, you're really not making enough new stem cells, and if you don't have enough stem cells you can't make enough neurons in the brain. On the other hand, some neurons do get made, but a lot of them die."
The team saw similar results (premature differentiation and death) when they extended the process of cell division in genetically normal mice using two different drugs. And further experiments suggest that both differentiation and death are distinct outcomes of the delayed stem cells.
Magoh is a protein that switches on the expression of many other important genes but it does not work alone. In fact, previous research has linked Magoh's partners in gene regulation to other neurodevelopmental diseases. The Duke team is now planning large-scale screening approaches to ask what other genetic pathways influence the decision point when a delayed stem cell makes a neuron.
http://today.duke.edu/2016/01/microcephaly
Edited
Latest News
Behavioral effects of ethanol intoxication linked to acetaldehyde metabolism in brain
First patient-derived tumoroid model for cervical cancer
Brain signaling disrupted by plasticisers
Histone chaperones and molecular chaperones combine to protect histone proteins on route to chrom…
Why snoring and disrupted sleep are associated with behavioral problems in children?
Other Top Stories
COVID-19 may have a longer incubation period!
Building our antibody repertoire by the gut microbes
Immature and Dysfunctional Immune Cells in COVID-19
BCG vaccine is safe and does not lead to an increased risk of COVID-19 symptoms
How coronavirus transports viral RNA to the cytosol
Protocols
Protocol for brain-wide or region-specific microglia depletion and repopulation in adult mice
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
Publications
Brain ethanol metabolism by astrocytic ALDH2 drives the behavioural effects of ethanol intoxication
Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberc…
Bisphenols exert detrimental effects on neuronal signaling in mature vertebrate brains
DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network
Mitochondria: new players in homeostatic regulation of firing rate set points
Presentations
Neural Networks
MicroRNA
Multiple Sclerosis
BASIC PRINCIPLES OF IMMUNOTHERAPY
Cell Organelles and their Functions
Posters
Lymphangiogenesis-inducing vaccines to treat melanomas
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE