A new proof-of-concept study details how an automated system driven by artificial intelligence can design, build, test and learn complex biochemical pathways to efficiently produce lycopene, a red pigment found in tomatoes and commonly used as a food coloring, opening the door to a wide range of biosynthetic applications, researchers report.
The results of the study, which combined a fully automated robotic platform called the Illinois Biological Foundry for Advanced Biomanufacturing with AI to achieve biomanufacturing, are published in the journal Nature Communications.
"Biofoundries are factories that mimic the foundries that build semiconductors, but are designed for biological systems instead of electrical systems," said the research lead.
However, because biology offers many pathways to chemical production, the researchers assert that a system driven by AI and capable of choosing from thousands of experimental iterations is required for true automation.
Previous biofoundry efforts have produced a wide variety of products such as chemicals, fuels, and engineered cells and proteins, the researchers said, but those studies were not performed in a fully automated manner.
"Past studies in biofoundry development mainly focused on only one of the design, build, test and learn elements," the author said. "A researcher was still required to perform data analysis and to plan for the next experiment. Our system, dubbed BioAutomata, closes the design, build, test and learn loop and leaves humans out of the process."
BioAutomata completed two rounds of fully automated construction and optimization of the lycopene-production pathway, which includes the design and construction of the lycopene pathways, transfer of the DNA-encoding pathways into host cells, growth of the cells, and extraction and measurement of the lycopene production.
"BioAutomata was able to reduce the number of possible lycopene-production pathways constructed from over 10,000 down to about 100 and create an optimized quantity of lycopene-overproducing cells within weeks - greatly reducing time and cost," the author said.
The authors envision fully automated biofoundries being a future revolution in smart manufacturing, not unlike what automation did for the automobile industry.
"A hundred years ago, people built cars by hand," the author said. "Now, that process is much more economical and efficient thanks to automation, and we imagine the same for biomanufacturing of chemicals and materials."
https://news.illinois.edu/view/6367/804371
https://www.nature.com/articles/s41467-019-13189-z
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Ftowards-a-fully&filter=22
Automatic bio-production platform using artificial intelligence!
- 2,209 views
- Added
Edited
Latest News
How molecules in a cell int…
By newseditor
Posted 02 Dec
Genetic programmes underlie…
By newseditor
Posted 01 Dec
APOE variant neurons releas…
By newseditor
Posted 01 Dec
Reducing vitamin B5 slows b…
By newseditor
Posted 01 Dec
Mouse brain is 'rewired' du…
By newseditor
Posted 01 Dec
Other Top Stories
First cell culture of live adult human neurons shows potential of b…
Read more
Important bio-chemical produced on a large scale by E. coli
Read more
Using E. coli to detect hormone disruptors in the environment
Read more
Remote-controlled bacteria made to swim
Read more
Optogenetic tool that inhibits neural activity
Read more
Protocols
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Microfluidic-based skin-on-…
By newseditor
Posted 28 Nov
Publications
What Is Prediabetes?
By newseditor
Posted 02 Dec
Patient- and xenograft-deri…
By newseditor
Posted 02 Dec
APOE4-promoted gliosis and…
By newseditor
Posted 01 Dec
Sensory neuronal STAT3 is c…
By newseditor
Posted 01 Dec
Vitamin B5 supports MYC onc…
By newseditor
Posted 01 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar