Brain-computer interfaces (BCI) work on the principle that measurable changes in electrical brain activity occur just by thinking about performing a task. Signals can be read by an EEG (electroencephalography), evaluated, and then converted into control signals via a machine learning system, which can then be used to operate a computer or a prosthesis. In a recently published study in the Journal of Physiology, researchers demonstrated that after just one hour’s training with a BCI significant changes could be detected in test subjects’ brains, meaning that training with the BCI also has direct repercussions on the neuronal structure and function of the brain.
The study examined the influence of two different types of BCI on the brains of test subjects with no prior experience of this technology. The first subgroup was given the task of imagining that they were moving their arms or feet, in other words a task requiring the use of the brain’s motor system. The task given to the second group addressed the brain’s visual center by requiring them to recognize and select letters on a screen.
Experience shows that test subjects achieve good results in visual tasks right from the outset and that further training does not improve these results, whereas addressing the brain’s motor system is much more complex and requires practice. In order to document potential changes, test subjects’ brains were examined before and after each BCI experiment using a special visualizing process – MRT (magnetic resonance tomography).
“We know that intensive physical training affects the plasticity of the brain,” says the senior author. Plasticity refers to the brain’s ability to alter depending on how it is used. Scientists distinguish here between functional plasticity, where changes only occur in the intensity of the signals between the individual synapses, and structural plasticity. Structural plasticity refers to a change in nerve cells or even the forming of new nerve cells.
“We asked ourselves if these impacts on the brain’s plasticity would also occur in purely mental BCI experimental tasks, in other words if test subjects only think of a task without actually performing it,” says another author.
The results did indeed show measurable changes in precisely those regions of the brain specifically required to conduct the tasks. In other words, changes in the visual areas of the brain in test subjects given the visual task and changes in the motor area in test subjects who practiced imagining moving a part of their body. It is particularly worth noting that changes occurred within very short periods of time (one hour) using BCI, rather than weeks as is the case in physical training.
“It is still not clear if these changes would also occur if test subjects were not provided with feedback via the BCI system that their brain signals could be successfully read,” the author out. However the results do in general demonstrate that the effects of training with a brain-computer interface could have therapeutic benefits by stimulating specific regions of the brain.
“The spatial specificity of the impacts achieved with BCI could be used to target those areas of the brain affected by strokes,” explains another author. “Machine learning processes serve to decode or translate BCI activities into control signals,” adds the author. “This is the only way to convert individual BCI activities into control signals without lengthy training periods. This customized reading of the BCI will be decisive in determining whether the technology can be used in rehabilitation systems in the future."
https://www.cbs.mpg.de/Can-our-thoughts-alter-our-brains?c=7533
https://physoc.onlinelibrary.wiley.com/doi/10.1113/JP278118
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fimmediate-brain&filter=22
Can our thoughts alter our brains?
- 1,985 views
- Added
Edited
Latest News
How molecules in a cell int…
By newseditor
Posted 02 Dec
Genetic programmes underlie…
By newseditor
Posted 01 Dec
APOE variant neurons releas…
By newseditor
Posted 01 Dec
Reducing vitamin B5 slows b…
By newseditor
Posted 01 Dec
Mouse brain is 'rewired' du…
By newseditor
Posted 01 Dec
Other Top Stories
Musical rhythms in the brain
Read more
Cannabinoid signaling and social interactions
Read more
Researchers uncover diverse subtypes of serotonin-producing neurons
Read more
Newly identified chemical in eye drop could clear up cataracts
Read more
Interneuronal Nitric Oxide Signaling Mediates Post-synaptic Long-Te…
Read more
Protocols
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Microfluidic-based skin-on-…
By newseditor
Posted 28 Nov
Publications
What Is Prediabetes?
By newseditor
Posted 02 Dec
Patient- and xenograft-deri…
By newseditor
Posted 02 Dec
APOE4-promoted gliosis and…
By newseditor
Posted 01 Dec
Sensory neuronal STAT3 is c…
By newseditor
Posted 01 Dec
Vitamin B5 supports MYC onc…
By newseditor
Posted 01 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar