Researchers have developed a “heart attack on a chip,” a device that could one day serve as a testbed to develop new heart drugs and even personalized medicines.
“Our device replicates some key features of a heart attack in a relatively simple and easy to use system,” said the senior author.
“This enables us to more clearly understand how the heart is changing after a heart attack. From there, we and others can develop and test drugs that will be most effective for limiting the further degradation of heart tissue that can occur after a heart attack,” added the author. The detail findings are recently released in the journal Science.
Coronary heart disease is America’s No. 1 killer. In 2018, 360,900 Americans succumbed to it, making heart disease responsible for 12.6% of all deaths in the United States, according to the AHA. Severe coronary heart disease can cause a heart attack, which accounts for much of that pain and suffering. Heart attacks occur when fat, cholesterol and other substances in the coronary arteries severely reduce the flow of oxygen-rich blood to part of the heart. Between 2005 and 2014, an average of 805,000 Americans per year had heart attacks.
Even if a patient survives a heart attack, over time they can become increasingly fatigued, enervated and sick; some even die due to heart failure. That’s because heart cells don’t regenerate like other muscle cells. Instead, immune cells appear at the site of injury, some of which can be harmful. Additionally, scarring develops that weakens the heart and the amount of blood it can pump.
However, scientists don’t completely understand this process, especially how heart cells in the healthy and injured parts of the heart communicate with each other and how and why they change after a heart attack.
The authors believe their heart attack on a chip can shed some light on those mysteries.
“Fundamentally, we want to have a model that can lead to a better understanding of heart attack injury,” the first author said.
The heart attack on a chip is literally built from the ground up. At the base is a 22-millimeter-by-22-millimeter square microfluidic device slightly larger than a quarter – made from a rubber-like polymer called PDMS – with two channels on opposing sides through which gases flow. Above that sits a very thin layer of the same rubber material, which is permeable to oxygen. A micro layer of protein is then patterned on the top of the chip, “so that the heart cells align and form the same architecture that we have in our hearts,” the senior author said. Finally, rodent heart cells are grown atop the protein.
To mimic a heart attack, gas with oxygen and gas without oxygen is released through each channel of the microfluidic device, “exposing our heart on a chip to an oxygen gradient, similar to what really happens in a heart attack,” the senior author said.
Because the microfluidic device is small, clear, and easy to see on a microscope, the author added, it also allows researchers to observe in real time functional changes that sometimes happen in the heart after an attack, including an arrythmia, or an irregular heartbeat, and contractile dysfunction, or decreases in the contraction strength of the heart. In the future, researchers can make the model more complex by adding immune cells or fibroblasts, the cells that generate the scar after a heart attack.
By contrast, researchers cannot watch changes to heart tissue in real time with animal models. Additionally, traditional cell culture models uniformly expose heart cells to high, medium or low levels of oxygen, but not a gradient. That means they cannot mimic what really happens to damaged heart cells in the so-called border zone after a heart attack, the first author said.
https://www.science.org/doi/10.1126/sciadv.abn7097
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fa-myocardial-infarct&filter=22
Heart attack on a chip
- 1,020 views
- Added
Latest News
How our cells kill themselves
By newseditor
Posted 27 May
AI predicts the function of…
By newseditor
Posted 27 May
Hippocampo-cortical circuit…
By newseditor
Posted 26 May
A tumor protein p63 isoform…
By newseditor
Posted 24 May
Brain signatures for chroni…
By newseditor
Posted 24 May
Other Top Stories
New approach to RNA sequencing reveals thousands of unidentified RN…
Read more
How Huntingtin protein moves across the neurons via nanotubes
Read more
Direct oxidative stress damage shortens telomeres
Read more
How the cytoplasm separates from the yolk
Read more
Singlet molecular oxygen but not kynurenine is responsible for shar…
Read more
Protocols
Designed active-site librar…
By newseditor
Posted 27 May
A microfluidics-enabled aut…
By newseditor
Posted 22 May
TomoTwin: generalized 3D lo…
By newseditor
Posted 17 May
Optimization and validation…
By newseditor
Posted 16 May
EmbryoNet: using deep learn…
By newseditor
Posted 12 May
Publications
Structural basis of NINJ1-m…
By newseditor
Posted 27 May
A general model to predict…
By newseditor
Posted 27 May
Emerging frontiers in regen…
By newseditor
Posted 27 May
Promoting regeneration whil…
By newseditor
Posted 27 May
Massively parallel base edi…
By newseditor
Posted 27 May
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar