About 40 per cent of all drugs act on G protein-coupled receptors (GPCRs), providing relief or even cures for a wide range of diseases. They include compounds used to treat Parkinson’s disease, pain, high blood pressure and allergies. GPCRs are easy for drugs to reach because they are located on the surface of cells. In addition, every cell in the body and its organs has very specific GPCR patterns, which means that the side effects of GPCR drugs can be well limited. “However, one large family within the more than 700-member GPCR class, the adhesion GPCRs (aGPCRs), is still uncharted pharmacological and pharmaceutical territory. These molecules are associated with a wide range of diseases, from cancer to psychiatric disorders,” explains one of the two leaders of the new study.
Adhesion GPCRs are a large class of surface proteins that recognise chemical and mechanical stimuli in the body. They have not yet been exploited for therapeutic drugs. aGPCRs have a two-component structure and a unique activation mechanism. The scientists have now presented a molecular sensor system that can be used in living organisms and in cell culture dishes to detect when and where an aGPCR breaks apart as a result of mechanical stimulation, thus separating the two components. This break can activate the receptors and thus plays a crucial role in the transmission of the biochemical signal. The aim is to provide legal protection for the new findings and to help bring the methods now available for aGPCR drug identification to the point of practical application.
“There is a notion that many aGPCRs are activated like hand grenades. The two parts of the aGPCR are like the safety pin and the explosive charge. When the safety pin is removed by mechanical stimuli and receptor binding molecules, the explosive charge is armed in the form of receptor activity. Through our work, we can now offer a method to render this mechanism visible. In particular, we have been able to show in which cells receptor separation occurs and under what conditions,” says the co-leader of the study.
The co-lead adds: “We have succeeded in visualising an important biological process of a large receptor family in the living animal, the fruit fly. Future projects will include translating these findings to human aGPCRs. In the best case scenario, in the long term, we will be able to find compounds that modulate the activity of these receptors, and develop drugs that can treat the symptoms of adhesion GPCR-related diseases.”
https://www.nature.com/articles/s41586-023-05802-5
Mechano- and ligand-dependent adhesion GPCR dissociation
- 666 views
- Added
Edited
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
3D imaging of lethal prions
Read more
How cholesterol in the brain regulates ion channels and alters thei…
Read more
Delivering nucleic acid therapy to the CNS
Read more
Portable, bedside, low-field magnetic resonance imaging for evaluat…
Read more
Oxygen-delivering hydrogel accelerates diabetic wound healing
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar