Delivering what has been so challenging to produce, researchers present an engineered analog of tooth enamel – an ideal model for designing biomimetic materials – designed to closely mimic the composition and structure of biological teeth’s hard mineralized outer layer. It demonstrates exceptional mechanical properties, they say.
Natural tooth enamel – the thin outer layer of our teeth – is the hardest biological material in the human body. It is renowned for its high stiffness, hardness, viscoelasticity, strength, and toughness and exhibits exceptional damage resistance, despite being only several millimeters thick.
Tooth enamel’s unusual combination of properties is a product of its hierarchical architecture – a complex structure made up of mostly hydroxyapatite nanowires interconnected by an amorphous intergranular phase (AIP) consisting of magnesium-substituted amorphous calcium phosphate.
However, accurately replicating this type of hierarchical organization in a scalable abiotic composite has remained a challenge.
Here, the researchers present an engineered enamel that contains the essential hierarchical structure at multiple scales. The artificial tooth enamel (ATE) was produced using AIP-coated hydroxyapatite nanowires, which were aligned using dual-directional freezing in the presence of polyvinyl alcohol.
According to the authors, this allowed the engineered structures to have an atomic, nanoscale and microscale organization like natural enamel.
In a series of tests, the authors demonstrated that the ATE nanocomposite simultaneously exhibited high stiffness, hardness, strength, viscoelasticity, and toughness, exceeding both the properties of enamel and previously manufactured materials.
https://www.science.org/doi/10.1126/science.abj3343
Multiscale engineered artificial tooth enamel
- 995 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Burst of morning gene activity tells plants when to flower
Read more
How plants bind their green pigment chlorophyll
Read more
A topical gel to protect farmers against pesticide-induced neuronal…
Read more
Exploiting epigenetic variation for plant breeding
Read more
Plant-based toxin modified to target tumors
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar