Our memories are rich in detail: we can vividly recall the color of our home, the layout of our kitchen, or the front of our favorite café. How the brain encodes this information has long puzzled neuroscientists.
In a new study, researchers identified a neural coding mechanism that allows the transfer of information back and forth between perceptual regions to memory areas of the brain. The results are published in Nature Neuroscience.
Prior to this work, the classic understanding of brain organization was that perceptual regions of the brain represent the world "as it is," with the brain’s visual cortex representing the external world based on how light falls on the retina, "retinotopically." In contrast, it was thought that the brain’s memory areas represent information in an abstract format, stripped of details about its physical nature. However, according to the co-authors, this explanation fails to take into account that as information is encoded or recalled, these regions may in fact, share a common code in the brain.
"We found that memory-related brain areas encode the world like a 'photographic negative' in space," says a co-lead author. "And that ‘negative’ is part of the mechanics that move information in and out of memory, and between perceptual and memory systems."
In a series of experiments, participants were tested on perception and memory while their brain activity was recorded using a functional magnetic resonance imaging (fMRI) scanner. The team identified an opposing push-pull like coding mechanism, which governs the interaction between perceptual and memory areas in the brain.
The results showed that when light hits the retina, visual areas of the brain respond by increasing their activity to represent the pattern of light. Memory areas of the brain also respond to visual stimulation, but, unlike visual areas, their neural activity decreases when processing the same visual pattern.
The co-authors report that the study has three unusual findings. The first is their discovery that a visual coding principle is preserved in memory systems.
The second is that this visual code is upside-down in memory systems. "When you see something in your visual field, neurons in the visual cortex are driving while those in the memory system are quieted," says the senior author.
Third, this relationship flips during memory recall. "If you close your eyes and remember that visual stimuli in the same space, you'll flip the relationship: your memory system will be driving, suppressing the neurons in perceptual regions," says the senior author.
"Our results provide a clear example of how shared visual information is used by memory systems to bring recalled memories in and out of focus," says another co-lead author.
Moving forward, the team plans to explore how this push and pull dynamic between perception and memory may contribute to challenges in clinical conditions, including in Alzheimer’s.
https://www.nature.com/articles/s41593-023-01512-3
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fa-retinotopic-code&filter=22
New coding mechanism that transfers information from perception to memory
- 959 views
- Added
Latest News
Brain cells that plan where…
By newseditor
Posted 12 Sep
A common fatty acid may hel…
By newseditor
Posted 12 Sep
Transcription factor functi…
By newseditor
Posted 12 Sep
Blood platelet score predic…
By newseditor
Posted 12 Sep
Mouse skin made transparent…
By newseditor
Posted 12 Sep
Other Top Stories
A cell death protein's role in inflammation
Read more
Astrocytic interleukin-3 programs microglia and limits Alzheimer's…
Read more
A new pathogenic mechanism, heterodimeric interference, discovered!
Read more
Dysfunctional telomeres and intestinal inflammation
Read more
Intestinal HDL may prevent liver inflammation!
Read more
Protocols
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Fully defined NGN2 neuron p…
By newseditor
Posted 10 Sep
Clinical utility of a blood…
By newseditor
Posted 06 Sep
A glia-enriched stem cell 3…
By newseditor
Posted 01 Sep
Publications
Predictive grid coding in t…
By newseditor
Posted 12 Sep
Vaginal Lactobacillus fatty…
By newseditor
Posted 12 Sep
Position-dependent function…
By newseditor
Posted 12 Sep
A Platelet Reactivity Expre…
By newseditor
Posted 12 Sep
Targeting cytokine networks…
By newseditor
Posted 12 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar