Doctors would really like to be able to watch blood flowing in any part of the body in real time—that would allow them to see blockages, tumors and a host of other medical problems in their patients. Unfortunately, that is still not possible, though ultrasound and light microscopy are constantly improving, leading perhaps to that ultimate goal.
In this new effort, the researchers in the journal Nature report that they have taken a step closer using an approach that involves combining ultrasound and microscopic bubbles injected into the bloodstream of a living rat.
In their approach, extremely small gas bubbles, on the order of 2 micrometers, are injected into the bloodstream in a given area, such as an organ. Once they are inside the blood vessels, high frequency ultrasound waves are fired through the skin and into the area under study. When the waves hit the bubbles, some of the energy is bounced back. That energy is captured by an imaging system that operates at several thousand frames per second, allowing for distinguishing between echoes and bubble data. As each individual bubble moves, its progress is captured—putting all the individual images together allows for creating a single image of the entire vessel or network of vessels.
The researchers report that it took just ten seconds to build such an image of the blood vessels in a rat's brain, with a resolution of 10 micrometers—the best that has ever been achieved using any technique.
The researchers believe their new technology will make it into the medical community, helping doctors not only find problems and treat them, but to learn more about how they unfold. One such example would be tracking the growth of new vessels surrounding a tumor, which could help predict how fast it is growing.
http://www.nature.com/nature/journal/v527/n7579/full/nature16066.html
Edited
Latest News
A bacterial defense with po…
By newseditor
Posted 06 Sep
Type I interferon responses…
By newseditor
Posted 06 Sep
Cellular pathways to Alzhei…
By newseditor
Posted 06 Sep
A blood-based assay for the…
By newseditor
Posted 06 Sep
People who lack the immune…
By newseditor
Posted 06 Sep
Other Top Stories
Controlling brain circuits using magnetic fields
Read more
Blood proteins predict the risk of developing more than 60 diseases
Read more
Direct neuronal reprogramming to develop Alzheimer's disease model
Read more
Intricate DNA replication mechanism unraveled using cryo-electron m…
Read more
Differential protein isoform expression in a transgenic model of ta…
Read more
Protocols
Clinical utility of a blood…
By newseditor
Posted 06 Sep
A glia-enriched stem cell 3…
By newseditor
Posted 01 Sep
Mouse models to investigate…
By newseditor
Posted 30 Aug
A brief guide to studying e…
By newseditor
Posted 28 Aug
Single-cell EpiChem jointly…
By newseditor
Posted 24 Aug
Publications
Mitochondrial membrane lipi…
By newseditor
Posted 07 Sep
Microbial production of an…
By newseditor
Posted 07 Sep
Spatially clustered type I…
By newseditor
Posted 06 Sep
Cellular communities reveal…
By newseditor
Posted 06 Sep
Tuberculosis in otherwise h…
By newseditor
Posted 06 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar