Inventors of centuries past and scientists of today have found ingenious ways to make our lives better with magnets - from the magnetic needle on a compass to magnetic data storage devices and even MRI (magnetic resonance imaging) body scan machines.
All of these technologies rely on magnets made from solid materials. But what if you could make a magnetic device out of liquids? Using a modified 3D printer, a team of scientists have done just that. Their findings, to be published in the journal Science, could lead to a revolutionary class of printable liquid devices for a variety of applications from artificial cells that deliver targeted cancer therapies to flexible liquid robots that can change their shape to adapt to their surroundings.
"We've made a new material that is both liquid and magnetic. No one has ever observed this before," said lead author of the study. "This opens the door to a new area of science in magnetic soft matter."
The team came up with the idea of forming liquid structures from ferrofluids, solutions of iron-oxide particles that become strongly magnetic, but only in the presence of another magnet. "We wondered, if a ferrofluid can become temporarily magnetic, what could we do to make it permanently magnetic, and behave like a solid magnet but still look and feel like a liquid?" said the author.
To find out, the researchers used a 3D-printing technique they had developed to print 1 millimeter droplets from a ferrofluid solution containing iron-oxide-nanoparticles just 20 nanometers in diameter (the average size of an antibody protein.)
Using surface chemistry and sophisticated atomic force microscopy techniques the Lab revealed that the nanoparticles formed a solid-like shell at the interface between the two liquids through a phenomenon called "interfacial jamming," which causes the nanoparticles to crowd at the droplet's surface, "like the walls coming together in a small room jampacked with people," said the author.
To make them magnetic, the scientists placed the droplets by a magnetic coil in solution. As expected, the magnetic coil pulled the iron-oxide nanoparticles toward it. But when they removed the magnetic coil, something quite unexpected happened. Like synchronized swimmers, the droplets gravitated toward each other in perfect unison, forming an elegant swirl. "Like little dancing droplets," said another author.
Somehow, these droplets had become permanently magnetic. "We almost couldn't believe it," said the lead. "Before our study, people always assumed that permanent magnets could only be made from solids."
All magnets, no matter how big or small, have a north pole and a south pole. Opposite poles are attracted to each other, while the same poles repel each other.
Through magnetometry measurements, the scientists found that when they placed a magnetic field by a droplet, all of the nanoparticles' north-south poles, from the 70 billion iron-oxide nanoparticles floating around in the droplet to the 1 billion nanoparticles on the droplet's surface, responded in unison, just like a solid magnet.
Key to this finding were the iron-oxide nanoparticles jamming tightly together at the droplet's surface. With just 8 nm between each of the billion nanoparticles, together they created a solid surface around each liquid droplet. Somehow, when the jammed nanoparticles on the surface are magnetized, they transfer this magnetic orientation to the particles swimming around in the core, and the entire droplet becomes permanently magnetic, just like a solid, the authors explained.
The researchers also found that the droplet's magnetic properties were preserved, even if they divided a droplet into smaller, thinner droplets about the size of a human hair, added the lead.
Among the magnetic droplets' many amazing qualities, what stands out even more, the authors noted, is that they change shape to adapt to their surroundings, morphing from a sphere to a cylinder to a pancake, or a tube as thin as a strand of hair, or even to the shape of an octopus - all without losing their magnetic properties.
The droplets' can also be tuned to switch between a magnetic mode and a nonmagnetic mode. And when their magnetic mode is switched on, their movements can be remotely controlled as directed by an external magnet, the lead added.
The authors plan to continue research to develop even more complex 3D-printed magnetic liquid structures, such as a liquid-printed artificial cell, or miniature robotics that move like a tiny propeller for noninvasive yet targeted delivery of drug therapies to diseased cells.
https://newscenter.lbl.gov/2019/07/18/new-laws-of-attraction-scientists-print-magnetic-liquid-droplets/
https://science.sciencemag.org/content/365/6450/264
Latest News
Humans can intermittently r…
By newseditor
Posted 04 Dec
Why young kids don't get se…
By newseditor
Posted 04 Dec
Phosphatidylinositol 3,5-bi…
By newseditor
Posted 04 Dec
Probiotic-guided CAR-T cell…
By newseditor
Posted 04 Dec
Cell atlases of the human b…
By newseditor
Posted 04 Dec
Other Top Stories
Speech and social class perception
Read more
Hydrogen peroxide in the hair could be a biomarker for some schizop…
Read more
Genes and brain circuits in chronic stress mediated lack of motivation
Read more
Cell division rate in old age slows down in humans!
Read more
How your brain processes abstract thoughts
Read more
Protocols
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Publications
Behavioral and brain respon…
By newseditor
Posted 04 Dec
Toward low-cost gene therap…
By newseditor
Posted 04 Dec
The bidirectional immune cr…
By newseditor
Posted 04 Dec
Leveraging human immune org…
By newseditor
Posted 04 Dec
Single-cell long-read seque…
By newseditor
Posted 04 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar